# Stored data for abelian variety isogeny class 2.41.aj_ct, downloaded from the LMFDB on 25 September 2025. {"abvar_count": 1375, "abvar_counts": [1375, 2930125, 4755796375, 7984359145125, 13426146538750000, 22564498962826385125, 37929142411144198831375, 63758970594010546201945125, 107178927917199835286761711375, 180167782082809772797913620000000], "abvar_counts_str": "1375 2930125 4755796375 7984359145125 13426146538750000 22564498962826385125 37929142411144198831375 63758970594010546201945125 107178927917199835286761711375 180167782082809772797913620000000 ", "all_polarized_product": false, "all_unpolarized_product": false, "angle_corank": 0, "angle_rank": 2, "angles": [0.21116324953688, 0.527129909541623], "center_dim": 4, "cohen_macaulay_max": 2, "curve_count": 33, "curve_counts": [33, 1743, 69003, 2825563, 115886298, 4750316583, 194753838543, 7984917674803, 327381925076613, 13422659245067598], "curve_counts_str": "33 1743 69003 2825563 115886298 4750316583 194753838543 7984917674803 327381925076613 13422659245067598 ", "curves": ["y^2=36*x^5+40", "y^2=27*x^6+14*x^5+25*x^4+30*x^3+9*x^2+30*x+34", "y^2=6*x^6+15*x^5+37*x^4+6*x^3+30*x^2+7*x+24", "y^2=40*x^6+24*x^5+11*x^4+33*x^3+2*x^2+19*x+13", "y^2=17*x^6+12*x^5+5*x^4+14*x^3+29*x^2+25*x+19", "y^2=35*x^6+8*x^5+26*x^4+8*x^3+16*x^2+27*x+17", "y^2=32*x^6+32*x^5+12*x^4+2*x^2+30*x+4", "y^2=26*x^6+36*x^5+15*x^4+13*x^3+17*x+22", "y^2=22*x^6+2*x^5+28*x^4+32*x^3+3*x^2+37*x+7", "y^2=26*x^5+14*x^4+22*x^2+26*x+22", "y^2=18*x^6+34*x^5+16*x^4+26*x^3+37*x^2+26*x+23", "y^2=35*x^6+17*x^5+31*x^4+20*x^3+22*x^2+15*x+29", "y^2=40*x^6+16*x^5+40*x^4+33*x^3+11*x^2+2*x+37", "y^2=15*x^6+8*x^5+27*x^4+34*x^3+39*x^2+19*x+38", "y^2=29*x^6+39*x^5+33*x^4+15*x^3+38*x^2+32*x+28", "y^2=29*x^6+11*x^5+12*x^4+35*x^3+33*x^2+10*x+29", "y^2=9*x^6+19*x^5+13*x^4+39*x^3+4*x^2+36*x+9", "y^2=34*x^6+17*x^5+36*x^4+19*x^3+7*x^2+40*x+30", "y^2=22*x^6+19*x^5+23*x^4+36*x^3+17*x^2+6*x+33", "y^2=15*x^6+10*x^5+20*x^4+22*x^3+20*x^2+26*x+13", "y^2=13*x^6+35*x^4+15*x^3+18*x^2+26*x+30", "y^2=23*x^6+11*x^5+4*x^4+26*x^3+20*x^2+11*x+29", "y^2=23*x^6+20*x^5+7*x^4+16*x^3+8*x^2+16*x+27", "y^2=33*x^6+17*x^5+24*x^4+17*x^2+21*x+5", "y^2=9*x^6+8*x^5+3*x^4+8*x^3+28*x^2+24*x+29", "y^2=39*x^6+27*x^5+x^4+12*x^3+10*x+36", "y^2=30*x^6+9*x^5+24*x^3+11*x^2+37*x+25", "y^2=9*x^6+6*x^5+15*x^4+5*x^3+22*x^2+14*x+20", "y^2=6*x^6+27*x^5+31*x^4+17*x^3+23*x^2+13*x+13", "y^2=25*x^6+20*x^5+30*x^4+2*x^3+37*x^2+25*x+12", "y^2=7*x^6+35*x^5+8*x^4+20*x^3+37*x^2+13*x+30", "y^2=14*x^6+12*x^5+19*x^4+23*x^3+26*x+27", "y^2=27*x^6+25*x^5+20*x^4+3*x^3+32*x^2+9*x+40", "y^2=30*x^6+17*x^5+13*x^4+16*x^3+10*x^2+39*x+5", "y^2=34*x^6+33*x^5+16*x^4+33*x^3+11*x^2+27*x+35", "y^2=35*x^6+8*x^5+39*x^4+3*x^3+16*x^2+8*x+35", "y^2=3*x^6+8*x^5+17*x^4+18*x^3+32*x^2+3", "y^2=9*x^6+19*x^5+37*x^4+10*x^3+13*x^2+34*x+14", "y^2=16*x^6+4*x^5+31*x^4+36*x^3+7*x^2+32*x+3", "y^2=34*x^6+16*x^5+20*x^4+15*x^3+39*x^2+26*x+3", "y^2=21*x^6+18*x^5+27*x^4+6*x^3+11*x^2+8*x+25", "y^2=32*x^6+2*x^5+6*x^4+12*x^3+3*x", "y^2=23*x^6+12*x^5+34*x^4+19*x^3+5*x^2+33*x+12", "y^2=4*x^6+9*x^5+34*x^4+38*x^3+21*x^2+20*x+11", "y^2=20*x^6+18*x^5+27*x^4+8*x^3+23*x^2+28*x+28", "y^2=34*x^6+3*x^5+24*x^4+20*x^3+30*x^2+34", "y^2=35*x^6+5*x^5+11*x^4+8*x^3+29*x+9", "y^2=5*x^6+12*x^5+6*x^4+9*x^3+24*x^2+20", "y^2=14*x^6+32*x^5+17*x^4+9*x^3+36*x^2+9*x+27", "y^2=13*x^6+16*x^5+14*x^4+26*x^3+29*x^2+28*x+4", "y^2=13*x^6+11*x^5+31*x^4+35*x^3+40*x^2+19*x+21", "y^2=23*x^6+34*x^5+33*x^4+36*x^2+7*x+12", "y^2=25*x^6+x^5+4*x^4+21*x^3+39*x^2+8*x+31", "y^2=29*x^6+36*x^5+14*x^4+31*x^3+16*x^2+39*x+21", "y^2=19*x^6+24*x^5+26*x^3+22*x^2+29*x+15", "y^2=16*x^6+4*x^5+4*x^4+19*x^3+10*x^2+16*x+40", "y^2=24*x^6+2*x^5+12*x^4+5*x^3+25*x^2+4*x+20", "y^2=35*x^6+5*x^5+33*x^4+24*x^3+2*x^2+x", "y^2=11*x^6+2*x^5+35*x^4+37*x^3+22*x^2+6*x+15", "y^2=26*x^6+18*x^5+18*x^4+23*x^3+11*x^2+19*x+19", "y^2=33*x^6+21*x^5+34*x^4+18*x^3+26*x^2+11*x+27", "y^2=11*x^6+31*x^4+23*x^2+24*x+17", "y^2=29*x^6+8*x^5+32*x^4+21*x^3+3*x^2+6*x+35", "y^2=28*x^6+39*x^5+29*x^3+17*x^2+17*x+26", "y^2=18*x^6+7*x^5+23*x^4+13*x^3+26*x^2+24*x+36", "y^2=10*x^6+33*x^5+6*x^4+14*x^3+2*x^2+7*x+22", "y^2=27*x^6+18*x^5+33*x^4+21*x^3+25*x^2+10*x+12", "y^2=27*x^6+17*x^5+40*x^4+19*x^3+23*x^2+18*x+15", "y^2=18*x^6+36*x^5+37*x^4+33*x^3+x^2+27*x+6"], "dim1_distinct": 0, "dim1_factors": 0, "dim2_distinct": 1, "dim2_factors": 1, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "endomorphism_ring_count": 8, "g": 2, "galois_groups": ["4T1"], "geom_dim1_distinct": 0, "geom_dim1_factors": 0, "geom_dim2_distinct": 1, "geom_dim2_factors": 1, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 4, "geometric_extension_degree": 1, "geometric_galois_groups": ["4T1"], "geometric_number_fields": ["4.0.125.1"], "geometric_splitting_field": "4.0.125.1", "geometric_splitting_polynomials": [[1, -1, 1, -1, 1]], "group_structure_count": 3, "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 69, "is_geometrically_simple": true, "is_geometrically_squarefree": true, "is_primitive": true, "is_simple": true, "is_squarefree": true, "is_supersingular": false, "jacobian_count": 69, "label": "2.41.aj_ct", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 10, "newton_coelevation": 2, "newton_elevation": 0, "number_fields": ["4.0.125.1"], "p": 41, "p_rank": 2, "p_rank_deficit": 0, "pic_prime_gens": [[1, 11, 1, 10], [1, 11, 2, 10]], "poly": [1, -9, 71, -369, 1681], "poly_str": "1 -9 71 -369 1681 ", "primitive_models": [], "principal_polarization_count": 69, "q": 41, "real_poly": [1, -9, -11], "simple_distinct": ["2.41.aj_ct"], "simple_factors": ["2.41.aj_ctA"], "simple_multiplicities": [1], "singular_primes": ["5,2*V-12", "3,13*F+8*V-60"], "size": 91, "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "4.0.125.1", "splitting_polynomials": [[1, -1, 1, -1, 1]], "twist_count": 10, "twists": [["2.41.j_ct", "2.1681.cj_cpt", 2], ["2.41.at_gp", "2.115856201.bsno_bjjvrzy", 5], ["2.41.b_acr", "2.115856201.bsno_bjjvrzy", 5], ["2.41.l_eh", "2.115856201.bsno_bjjvrzy", 5], ["2.41.q_ew", "2.115856201.bsno_bjjvrzy", 5], ["2.41.aq_ew", "2.13422659310152401.afmlbhs_absyqitxjybmo", 10], ["2.41.al_eh", "2.13422659310152401.afmlbhs_absyqitxjybmo", 10], ["2.41.ab_acr", "2.13422659310152401.afmlbhs_absyqitxjybmo", 10], ["2.41.t_gp", "2.13422659310152401.afmlbhs_absyqitxjybmo", 10]], "weak_equivalence_count": 10, "zfv_index": 1125, "zfv_index_factorization": [[3, 2], [5, 3]], "zfv_is_bass": false, "zfv_is_maximal": false, "zfv_pic_size": 50, "zfv_plus_index": 5, "zfv_plus_index_factorization": [[5, 1]], "zfv_plus_norm": 10125, "zfv_singular_count": 4, "zfv_singular_primes": ["5,2*V-12", "3,13*F+8*V-60"]}