# Stored data for abelian variety isogeny class 2.41.a_abe, downloaded from the LMFDB on 07 December 2025. {"abvar_count": 1652, "abvar_counts": [1652, 2729104, 4750228532, 7998850994176, 13422659088923252, 22564671106226875024, 37929227195109011134772, 63759024368276152688640000, 107178930967531933217414516852, 180167777017453985441480746255504], "abvar_counts_str": "1652 2729104 4750228532 7998850994176 13422659088923252 22564671106226875024 37929227195109011134772 63759024368276152688640000 107178930967531933217414516852 180167777017453985441480746255504 ", "all_polarized_product": false, "all_unpolarized_product": false, "angle_corank": 1, "angle_rank": 1, "angles": [0.190388534029373, 0.809611465970627], "center_dim": 4, "cohen_macaulay_max": 1, "curve_count": 42, "curve_counts": [42, 1622, 68922, 2830686, 115856202, 4750352822, 194754273882, 7984924409278, 327381934393962, 13422658867694102], "curve_counts_str": "42 1622 68922 2830686 115856202 4750352822 194754273882 7984924409278 327381934393962 13422658867694102 ", "curves": ["y^2=14*x^6+3*x^5+4*x^4+17*x^3+x^2+35*x+17", "y^2=40*x^6+21*x^5+32*x^4+29*x^3+22*x^2+23*x+38", "y^2=35*x^6+3*x^5+28*x^4+10*x^3+9*x^2+15*x+23", "y^2=16*x^6+37*x^5+18*x^4+27*x^3+23*x^2+25*x+5", "y^2=14*x^6+17*x^5+26*x^4+39*x^3+15*x^2+27*x+30", "y^2=29*x^6+24*x^5+10*x^4+18*x^3+36*x^2+18*x+15", "y^2=38*x^6+19*x^5+14*x^4+29*x^3+25*x^2+22*x+29", "y^2=14*x^6+27*x^5+23*x^4+12*x^3+4*x^2+14*x+3", "y^2=2*x^6+39*x^5+15*x^4+31*x^3+24*x^2+2*x+18", "y^2=19*x^6+19*x^5+7*x^4+28*x^3+33*x^2+29*x+2", "y^2=28*x^6+22*x^5+30*x^4+25*x^3+4*x^2+29*x+33", "y^2=22*x^6+x^5+40*x^4+4*x^3+30*x^2+39*x+8", "y^2=19*x^6+14*x^5+16*x^4+16*x^3+10*x^2+10*x+27", "y^2=5*x^6+14*x^5+2*x^4+4*x^3+26*x^2+29*x+38", "y^2=37*x^6+x^5+5*x^4+17*x^3+35*x^2+18*x+9", "y^2=40*x^5+29*x^4+40*x^3+13*x^2+33*x+11", "y^2=4*x^6+9*x^5+35*x^4+21*x^3+31*x^2+25*x+17", "y^2=28*x^6+33*x^5+19*x^4+37*x^3+36*x^2+38*x+40", "y^2=4*x^6+34*x^5+32*x^4+17*x^3+11*x^2+23*x+35", "y^2=7*x^5+12*x^4+9*x^3+5*x^2+22*x", "y^2=35*x^6+40*x^5+35*x^4+7*x^3+2*x^2+9*x+23", "y^2=2*x^6+30*x^5+30*x^4+4*x^3+2*x^2+22*x+38", "y^2=28*x^6+13*x^5+4*x^4+7*x^3+5*x^2+37*x+29", "y^2=4*x^6+37*x^5+24*x^4+x^3+30*x^2+17*x+10", "y^2=18*x^6+20*x^5+12*x^4+15*x^2+23*x+4", "y^2=9*x^6+34*x^5+37*x^4+8*x^3+39*x^2+37*x+12", "y^2=13*x^6+40*x^5+17*x^4+7*x^3+29*x^2+17*x+31", "y^2=32*x^6+30*x^5+21*x^4+16*x^3+6*x^2+29*x", "y^2=11*x^6+17*x^5+18*x^4+14*x^3+24*x^2+32*x+27", "y^2=6*x^6+13*x^5+38*x^4+x^3+24*x^2+14*x+26", "y^2=36*x^6+37*x^5+23*x^4+6*x^3+21*x^2+2*x+33", "y^2=25*x^6+32*x^5+22*x^4+35*x^3+21*x^2+32*x+3", "y^2=11*x^6+33*x^5+25*x^4+14*x^3+28*x^2+8*x+20", "y^2=25*x^6+34*x^5+27*x^4+2*x^3+4*x^2+7*x+38", "y^2=8*x^6+34*x^5+38*x^4+31*x^3+23*x^2+29", "y^2=9*x^6+18*x^5+40*x^4+32*x^3+17*x^2+36*x+22", "y^2=29*x^6+40*x^5+31*x^4+14*x^3+24*x^2+9*x+36", "y^2=34*x^6+27*x^5+2*x^4+23*x^3+27*x^2+11*x+23", "y^2=8*x^6+37*x^5+9*x^4+7*x^3+34*x^2+32*x+27", "y^2=13*x^6+19*x^5+20*x^4+14*x^2+13*x+25", "y^2=21*x^6+35*x^4+14*x^3+9*x^2+6", "y^2=6*x^6+6*x^5+21*x^4+29*x^3+19*x^2+13*x+2", "y^2=18*x^6+5*x^4+39*x^3+28*x^2+7*x+15", "y^2=26*x^6+30*x^4+29*x^3+4*x^2+x+8", "y^2=13*x^6+21*x^5+29*x^4+28*x^3+36*x^2+19*x", "y^2=7*x^6+7*x^5+40*x^4+39*x^3+26*x^2+17*x+9", "y^2=9*x^6+33*x^5+x^3+25*x^2+23*x+38", "y^2=35*x^6+17*x^5+2*x^4+25*x^3+19*x^2+21*x+3", "y^2=9*x^6+29*x^5+28*x^4+29*x^3+12*x^2+35*x+3", "y^2=7*x^6+5*x^5+39*x^4+24*x^3+37*x^2+24*x+18", "y^2=x^6+30*x^5+29*x^4+21*x^3+17*x^2+21*x+26", "y^2=8*x^6+12*x^5+8*x^3+37*x^2+5*x+3", "y^2=7*x^6+31*x^5+7*x^3+17*x^2+30*x+18", "y^2=19*x^6+3*x^5+11*x^4+26*x^3+11*x^2+30*x+32", "y^2=32*x^6+18*x^5+25*x^4+33*x^3+25*x^2+16*x+28", "y^2=10*x^6+23*x^5+26*x^4+40*x^3+25*x^2+32*x+19", "y^2=39*x^6+38*x^5+12*x^3+20*x^2+16*x+28", "y^2=29*x^6+23*x^5+31*x^3+38*x^2+14*x+4", "y^2=36*x^6+18*x^5+31*x^4+24*x^3+35*x^2+36*x+35", "y^2=20*x^6+6*x^5+39*x^4+10*x^3+26*x^2+30*x+12", "y^2=25*x^6+27*x^5+10*x^4+32*x^3+33*x^2+17*x+28", "y^2=20*x^6+37*x^5+19*x^4+9*x^3+36*x^2+14*x+8", "y^2=19*x^6+37*x^5+30*x^4+11*x^3+36*x^2+9*x+2", "y^2=8*x^6+17*x^5+40*x^4+9*x^3+23*x^2+20*x+38", "y^2=7*x^6+20*x^5+35*x^4+13*x^3+15*x^2+38*x+23", "y^2=11*x^6+24*x^5+31*x^4+25*x^3+6*x^2+27*x+23", "y^2=25*x^6+21*x^5+22*x^4+27*x^3+36*x^2+39*x+15", "y^2=7*x^6+20*x^5+25*x^4+20*x^3+7*x^2+16*x+16", "y^2=28*x^6+16*x^5+14*x^4+6*x^3+25*x^2+36*x+17", "y^2=7*x^6+6*x^5+22*x^4+9*x^3+16*x^2+13*x+16"], "dim1_distinct": 0, "dim1_factors": 0, "dim2_distinct": 1, "dim2_factors": 1, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "endomorphism_ring_count": 7, "g": 2, "galois_groups": ["4T2"], "geom_dim1_distinct": 1, "geom_dim1_factors": 2, "geom_dim2_distinct": 0, "geom_dim2_factors": 0, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 2, "geometric_extension_degree": 2, "geometric_galois_groups": ["2T1"], "geometric_number_fields": ["2.0.91.1"], "geometric_splitting_field": "2.0.91.1", "geometric_splitting_polynomials": [[23, -1, 1]], "group_structure_count": 2, "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 70, "is_cyclic": false, "is_geometrically_simple": false, "is_geometrically_squarefree": false, "is_primitive": true, "is_simple": true, "is_squarefree": true, "is_supersingular": false, "jacobian_count": 70, "label": "2.41.a_abe", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 4, "newton_coelevation": 2, "newton_elevation": 0, "noncyclic_primes": [2], "number_fields": ["4.0.132496.2"], "p": 41, "p_rank": 2, "p_rank_deficit": 0, "pic_prime_gens": [[1, 7, 1, 8], [1, 3, 1, 2], [1, 19, 1, 24]], "poly": [1, 0, -30, 0, 1681], "poly_str": "1 0 -30 0 1681 ", "primitive_models": [], "principal_polarization_count": 92, "q": 41, "real_poly": [1, 0, -112], "simple_distinct": ["2.41.a_abe"], "simple_factors": ["2.41.a_abeA"], "simple_multiplicities": [1], "singular_primes": ["2,F-2*V+3"], "size": 200, "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "4.0.132496.2", "splitting_polynomials": [[25, 0, 3, 0, 1]], "twist_count": 2, "twists": [["2.41.a_be", "2.2825761.hhk_zqkws", 4]], "weak_equivalence_count": 7, "zfv_index": 64, "zfv_index_factorization": [[2, 6]], "zfv_is_bass": true, "zfv_is_maximal": false, "zfv_pic_size": 96, "zfv_plus_index": 4, "zfv_plus_index_factorization": [[2, 2]], "zfv_plus_norm": 2704, "zfv_singular_count": 2, "zfv_singular_primes": ["2,F-2*V+3"]}