# Stored data for abelian variety isogeny class 2.37.ai_da, downloaded from the LMFDB on 17 October 2025. {"abvar_count": 1144, "abvar_counts": [1144, 2004288, 2589760888, 3511929467904, 4808517376429624, 6583025886882958656, 9012020785979978615992, 12337492431589641289678848, 16890053649418214541925884664, 23122484902415493548564705210688], "abvar_counts_str": "1144 2004288 2589760888 3511929467904 4808517376429624 6583025886882958656 9012020785979978615992 12337492431589641289678848 16890053649418214541925884664 23122484902415493548564705210688 ", "all_polarized_product": false, "all_unpolarized_product": false, "angle_corank": 0, "angle_rank": 2, "angles": [0.289742775550786, 0.485973727486263], "center_dim": 4, "cohen_macaulay_max": 2, "curve_count": 30, "curve_counts": [30, 1462, 51126, 1873870, 69342990, 2565755206, 94931450406, 3512473907230, 129961738555134, 4808584629407062], "curve_counts_str": "30 1462 51126 1873870 69342990 2565755206 94931450406 3512473907230 129961738555134 4808584629407062 ", "curves": ["y^2=5*x^6+4*x^5+x^4+8*x^3+27*x^2+36*x+24", "y^2=8*x^6+17*x^5+6*x^4+34*x^3+11*x^2+26*x+22", "y^2=13*x^6+2*x^5+3*x^4+12*x^3+3*x^2+x+22", "y^2=35*x^6+12*x^5+11*x^4+33*x^3+10*x^2+24*x+15", "y^2=18*x^6+27*x^5+11*x^4+2*x^3+24*x^2+6*x+4", "y^2=5*x^6+10*x^5+23*x^4+17*x^3+9*x^2+3*x", "y^2=30*x^6+9*x^5+26*x^4+8*x^3+7*x^2+15*x+23", "y^2=18*x^6+4*x^5+2*x^4+25*x^3+35*x^2+25*x+22", "y^2=11*x^6+13*x^5+24*x^4+18*x^3+15*x^2+31*x+6", "y^2=35*x^6+18*x^5+15*x^4+27*x^3+33*x^2+36*x+8", "y^2=31*x^6+31*x^5+13*x^4+17*x^3+13*x^2+17*x+22", "y^2=19*x^6+31*x^5+34*x^4+x^3+14*x^2+9*x+5", "y^2=35*x^6+28*x^5+16*x^4+28*x^3+27*x^2+6*x+16", "y^2=9*x^6+36*x^5+7*x^4+2*x^3+28*x^2+32*x+31", "y^2=24*x^6+3*x^5+12*x^4+11*x^3+28*x^2+4*x+11", "y^2=12*x^6+28*x^5+22*x^4+14*x^3+31*x^2+28*x+29", "y^2=10*x^5+35*x^4+8*x^3+6*x^2+25*x+18", "y^2=23*x^6+7*x^5+6*x^4+6*x^3+25*x^2+20*x+32", "y^2=14*x^6+33*x^5+20*x^4+28*x^3+4*x^2+35*x+15", "y^2=8*x^6+25*x^4+5*x^3+20*x^2+x+19", "y^2=17*x^6+10*x^5+32*x^4+7*x^3+10*x^2+21*x+21", "y^2=23*x^6+10*x^5+7*x^4+9*x^3+19*x^2+26*x+35", "y^2=18*x^6+30*x^5+21*x^4+21*x^3+8*x^2+17*x+13", "y^2=12*x^6+28*x^5+20*x^4+19*x^3+25*x^2+10*x+33", "y^2=20*x^6+20*x^5+29*x^4+25*x^3+33*x^2+8*x+24", "y^2=23*x^6+32*x^5+36*x^4+11*x^3+6*x^2+23*x+1", "y^2=11*x^6+32*x^5+x^4+27*x^3+2*x^2+35*x+8", "y^2=10*x^6+8*x^5+31*x^4+29*x^3+3*x^2+25*x+10", "y^2=34*x^6+14*x^5+6*x^4+21*x^3+27*x^2+31*x+20", "y^2=23*x^6+31*x^5+7*x^4+24*x^3+33*x^2+14*x+8", "y^2=3*x^6+35*x^5+5*x^4+29*x^3+23*x^2+20*x+8", "y^2=34*x^6+14*x^5+4*x^4+2*x^3+31*x^2+19*x+23", "y^2=18*x^5+21*x^4+16*x^3+12*x^2+29*x+30", "y^2=24*x^6+34*x^5+14*x^4+7*x^3+27*x^2+29*x+5", "y^2=30*x^6+16*x^5+36*x^4+24*x^3+19*x^2+14*x+35", "y^2=11*x^6+20*x^5+21*x^4+9*x^3+18*x^2+27*x+25", "y^2=19*x^6+30*x^5+15*x^4+35*x^3+23*x^2+10*x+2", "y^2=2*x^6+28*x^5+12*x^4+25*x^3+7*x^2+11*x+27", "y^2=32*x^6+32*x^5+5*x^4+33*x^3+36*x^2+19*x+6", "y^2=31*x^6+30*x^5+21*x^4+32*x^3+13*x^2+11*x+16", "y^2=32*x^6+26*x^5+34*x^4+22*x^3+22*x^2+34*x+1", "y^2=30*x^6+32*x^5+x^4+23*x^3+10*x^2+35*x+36", "y^2=8*x^6+13*x^5+5*x^4+13*x^3+x^2+21*x+28", "y^2=33*x^5+3*x^4+31*x^3+5*x^2+29*x+15", "y^2=15*x^6+17*x^5+15*x^4+19*x^3+35*x+15", "y^2=25*x^6+27*x^5+x^4+7*x^3+18*x^2+36*x+21", "y^2=18*x^6+19*x^5+5*x^4+30*x^3+2*x^2+27*x+22", "y^2=7*x^5+26*x^4+23*x^3+13*x^2+16*x+7", "y^2=35*x^6+12*x^5+25*x^4+26*x^3+16*x^2+35*x+13", "y^2=8*x^6+21*x^5+25*x^4+3*x^3+27*x^2+2*x+22", "y^2=13*x^6+33*x^5+36*x^4+3*x^3+34*x^2+35*x+33", "y^2=4*x^6+6*x^5+3*x^4+15*x^3+32*x^2+19*x+19", "y^2=33*x^6+31*x^5+22*x^4+13*x^3+16*x^2+7*x+27", "y^2=6*x^6+17*x^5+32*x^4+14*x^3+x^2+7*x+20", "y^2=17*x^6+27*x^5+35*x^4+15*x^3+7*x+5", "y^2=34*x^6+12*x^4+31*x^3+32*x^2+35*x+21", "y^2=5*x^6+28*x^5+32*x^4+8*x^3+5*x^2+12*x+2", "y^2=17*x^6+6*x^5+14*x^4+18*x^3+36*x^2+20*x+35", "y^2=9*x^6+3*x^5+20*x^4+23*x^3+9*x^2+20*x+12", "y^2=6*x^6+6*x^5+25*x^4+22*x^3+6*x^2+x+35", "y^2=34*x^6+4*x^5+11*x^4+24*x^3+6*x^2+32*x+12", "y^2=8*x^6+11*x^5+9*x^4+28*x^3+24*x^2+31*x+18", "y^2=33*x^6+7*x^5+18*x^4+8*x^3+28*x^2+8*x+14", "y^2=14*x^6+20*x^5+12*x^4+34*x^3+5*x^2+7*x+25", "y^2=30*x^6+17*x^5+4*x^4+5*x^3+11*x^2+26*x+5", "y^2=35*x^6+35*x^5+32*x^4+x^3+21*x^2+36*x+22", "y^2=3*x^6+36*x^5+18*x^4+29*x^3+18*x^2+4*x+32", "y^2=24*x^6+2*x^5+35*x^4+23*x^2+4*x+8", "y^2=20*x^6+10*x^5+20*x^4+29*x^3+13*x^2+34*x+20", "y^2=23*x^6+22*x^5+31*x^4+30*x^3+21*x^2+3*x+35", "y^2=18*x^6+8*x^5+8*x^4+26*x^3+9*x^2+7*x+24", "y^2=25*x^6+6*x^5+10*x^4+15*x^3+9*x^2+x+15", "y^2=6*x^6+18*x^5+12*x^4+21*x^3+12*x^2+17*x+35", "y^2=29*x^6+19*x^5+31*x^4+26*x^3+33*x+30", "y^2=21*x^6+10*x^5+24*x^4+6*x^3+20*x^2+16*x+20", "y^2=24*x^6+26*x^5+6*x^4+15*x^3+36*x^2+19*x+24", "y^2=27*x^6+11*x^5+7*x^4+24*x^2+31*x+23", "y^2=20*x^6+25*x^5+22*x^4+15*x^3+30*x^2+35*x+2", "y^2=21*x^6+4*x^5+34*x^4+34*x^3+x^2+32*x+31", "y^2=24*x^6+31*x^5+19*x^3+7*x^2+31*x+30", "y^2=21*x^6+22*x^5+10*x^4+6*x^3+31*x^2+18*x+23", "y^2=18*x^6+35*x^5+13*x^4+6*x^3+29*x^2+29*x+3", "y^2=22*x^6+8*x^5+33*x^4+4*x^3+29*x^2+6*x+14", "y^2=34*x^6+x^5+4*x^4+13*x^3+30*x^2+32*x+8"], "dim1_distinct": 0, "dim1_factors": 0, "dim2_distinct": 1, "dim2_factors": 1, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "endomorphism_ring_count": 4, "g": 2, "galois_groups": ["4T3"], "geom_dim1_distinct": 0, "geom_dim1_factors": 0, "geom_dim2_distinct": 1, "geom_dim2_factors": 1, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 4, "geometric_extension_degree": 1, "geometric_galois_groups": ["4T3"], "geometric_number_fields": ["4.0.490752.3"], "geometric_splitting_field": "4.0.490752.3", "geometric_splitting_polynomials": [[213, 0, 48, 0, 1]], "group_structure_count": 3, "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 84, "is_geometrically_simple": true, "is_geometrically_squarefree": true, "is_primitive": true, "is_simple": true, "is_squarefree": true, "is_supersingular": false, "jacobian_count": 84, "label": "2.37.ai_da", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 2, "newton_coelevation": 2, "newton_elevation": 0, "number_fields": ["4.0.490752.3"], "p": 37, "p_rank": 2, "p_rank_deficit": 0, "pic_prime_gens": [[1, 3, 1, 2], [1, 11, 1, 6], [1, 11, 3, 12], [1, 13, 1, 6]], "poly": [1, -8, 78, -296, 1369], "poly_str": "1 -8 78 -296 1369 ", "primitive_models": [], "principal_polarization_count": 84, "q": 37, "real_poly": [1, -8, 4], "simple_distinct": ["2.37.ai_da"], "simple_factors": ["2.37.ai_daA"], "simple_multiplicities": [1], "singular_primes": ["2,F+3"], "size": 132, "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "4.0.490752.3", "splitting_polynomials": [[213, 0, 48, 0, 1]], "twist_count": 2, "twists": [["2.37.i_da", "2.1369.do_gbe", 2]], "weak_equivalence_count": 5, "zfv_index": 8, "zfv_index_factorization": [[2, 3]], "zfv_is_bass": false, "zfv_is_maximal": false, "zfv_pic_size": 48, "zfv_plus_index": 2, "zfv_plus_index_factorization": [[2, 1]], "zfv_plus_norm": 13632, "zfv_singular_count": 2, "zfv_singular_primes": ["2,F+3"]}