# Stored data for abelian variety isogeny class 2.37.ai_cc, downloaded from the LMFDB on 02 December 2025. {"abvar_count": 1120, "abvar_counts": [1120, 1935360, 2560536160, 3512291328000, 4810581264949600, 6583323317586462720, 9012034310312001267040, 12337506893331977011200000, 16890054763753555814121808480, 23122482962716942998093324748800], "abvar_counts_str": "1120 1935360 2560536160 3512291328000 4810581264949600 6583323317586462720 9012034310312001267040 12337506893331977011200000 16890054763753555814121808480 23122482962716942998093324748800 ", "angle_corank": 0, "angle_rank": 2, "angles": [0.19286113307749, 0.552568456711253], "center_dim": 4, "cohen_macaulay_max": 3, "curve_count": 30, "curve_counts": [30, 1414, 50550, 1874062, 69372750, 2565871126, 94931592870, 3512478024478, 129961747129470, 4808584226024614], "curve_counts_str": "30 1414 50550 1874062 69372750 2565871126 94931592870 3512478024478 129961747129470 4808584226024614 ", "curves": ["y^2=35*x^6+31*x^5+31*x^4+3*x^3+2*x^2+26*x", "y^2=8*x^6+16*x^5+10*x^4+7*x^3+13*x^2+19*x+15", "y^2=25*x^6+33*x^5+23*x^4+21*x^3+23*x^2+33*x+25", "y^2=10*x^6+8*x^5+30*x^4+3*x^3+30*x^2+8*x+10", "y^2=2*x^6+35*x^5+13*x^4+32*x^3+13*x+8", "y^2=24*x^6+21*x^5+10*x^4+11*x^3+34*x^2+34*x+5", "y^2=16*x^6+30*x^5+17*x^4+2*x^3+17*x^2+30*x+16", "y^2=3*x^6+4*x^5+13*x^4+24*x^3+29*x^2+9*x+27", "y^2=33*x^6+4*x^5+29*x^4+8*x^3+23*x^2+26*x+20", "y^2=21*x^5+16*x^4+2*x^3+16*x^2+21*x", "y^2=13*x^6+35*x^4+24*x^3+x^2+21*x", "y^2=20*x^6+29*x^5+2*x^4+2*x^3+16*x^2+9*x+25", "y^2=25*x^5+6*x^4+17*x^3+21*x^2+32*x+6", "y^2=18*x^6+5*x^5+5*x^4+7*x^2+15*x+32", "y^2=x^6+21*x^5+28*x^4+10*x^3+30*x^2+4*x+1", "y^2=23*x^6+5*x^5+13*x^4+14*x^3+33*x^2+5*x+13", "y^2=16*x^6+26*x^5+34*x^4+30*x^3+35*x^2+7*x+14", "y^2=23*x^6+6*x^5+13*x^4+34*x^3+6*x^2+23*x+3", "y^2=13*x^6+36*x^5+12*x^4+9*x^3+32*x^2+34*x+2", "y^2=23*x^6+30*x^5+18*x^4+15*x^3+8*x^2+18*x+32", "y^2=25*x^6+34*x^5+27*x^4+11*x^3+24*x^2+23*x", "y^2=14*x^6+26*x^5+19*x^4+32*x^3+25*x^2+22*x+22", "y^2=14*x^6+4*x^5+34*x^4+34*x^3+20*x^2+3*x+2", "y^2=14*x^6+11*x^5+32*x^4+31*x^3+31*x^2+29*x+11", "y^2=x^6+17*x^5+35*x^4+30*x^3+26*x^2+7*x+17", "y^2=2*x^6+17*x^5+4*x^4+35*x^3+30*x^2+22*x+2", "y^2=35*x^6+3*x^5+28*x^4+30*x^3+28*x^2+11*x+10", "y^2=29*x^6+23*x^5+30*x^4+16*x^3+19*x^2+19*x+18", "y^2=26*x^5+20*x^4+5*x^3+32*x^2+33*x+13", "y^2=18*x^6+3*x^5+10*x^4+15*x^3+10*x^2+3*x+18", "y^2=31*x^6+14*x^4+20*x^3+9*x^2+35*x+16", "y^2=25*x^6+18*x^5+10*x^4+21*x^3+34*x^2+26*x+13", "y^2=36*x^6+18*x^5+19*x^3+16*x^2+16*x+19", "y^2=26*x^6+34*x^5+14*x^4+33*x^3+6*x^2+25*x+31", "y^2=31*x^6+3*x^5+7*x^4+19*x^3+24*x^2+x+15", "y^2=12*x^5+13*x^4+24*x^3+30*x^2+23*x+36", "y^2=26*x^6+x^4+x^2+29*x+15", "y^2=3*x^6+32*x^4+11*x^3+32*x^2+3", "y^2=x^6+10*x^5+28*x^4+35*x^3+36*x^2+6*x+4", "y^2=18*x^6+16*x^5+17*x^4+18*x^3+20*x^2+11*x+26", "y^2=6*x^6+31*x^5+23*x^4+31*x^3+28*x^2+31*x+28", "y^2=3*x^6+30*x^5+16*x^3+30*x+3", "y^2=5*x^6+32*x^5+31*x^4+22*x^3+29*x^2+24*x+5", "y^2=27*x^6+19*x^5+27*x^4+35*x^3+27*x^2+19*x+27", "y^2=19*x^5+2*x^4+8*x^3+5*x^2+23*x+21", "y^2=32*x^6+32*x^5+2*x^4+30*x^3+31*x^2+29*x+24", "y^2=34*x^6+4*x^5+33*x^4+11*x^3+6*x^2+16*x+24", "y^2=36*x^6+14*x^5+30*x^4+30*x^3+6*x^2+30*x", "y^2=35*x^6+25*x^5+4*x^4+2*x^3+4*x^2+25*x+35", "y^2=2*x^6+6*x^5+14*x^4+16*x^3+14*x^2+6*x+2", "y^2=24*x^6+36*x^5+8*x^4+35*x^3+33*x^2+9*x+11", "y^2=x^6+5*x^5+9*x^4+12*x^3+14*x^2+29*x+24", "y^2=15*x^6+31*x^5+9*x^4+35*x^3+12*x^2+20*x+32", "y^2=28*x^6+15*x^5+17*x^4+18*x^3+10*x^2+22*x+22", "y^2=26*x^6+25*x^5+4*x^4+4*x^3+33*x^2+12*x+20", "y^2=31*x^6+21*x^5+23*x^4+30*x^3+23*x^2+21*x+31", "y^2=20*x^6+26*x^5+7*x^4+25*x^3+2*x^2+19*x+14", "y^2=6*x^6+13*x^5+23*x^4+17*x^3+2*x^2+36*x+2", "y^2=13*x^6+12*x^5+29*x^4+4*x^3+23*x^2+13*x+14", "y^2=25*x^6+5*x^5+6*x^4+20*x^3+4*x^2+7*x+36", "y^2=20*x^6+15*x^5+5*x^4+19*x^2+19*x+22", "y^2=19*x^6+24*x^5+3*x^4+14*x^3+21*x^2+11*x+11", "y^2=7*x^6+32*x^5+16*x^4+13*x^3+30*x^2+13*x+20", "y^2=30*x^6+34*x^5+21*x^4+23*x^3+11*x^2+22*x+15", "y^2=29*x^6+5*x^5+29*x^4+15*x^3+12*x^2+30*x+11", "y^2=19*x^6+10*x^5+36*x^4+31*x^3+26*x^2+26*x", "y^2=31*x^6+14*x^5+6*x^4+36*x^3+5*x^2+18*x+2", "y^2=25*x^6+22*x^5+32*x^4+23*x^3+24*x^2+15*x+13", "y^2=36*x^6+4*x^5+15*x^4+6*x^3+27*x^2+36*x+4", "y^2=2*x^6+25*x^5+2*x^4+2*x^3+22*x^2+28*x+14", "y^2=17*x^6+23*x^5+12*x^4+27*x^3+16*x^2+17*x+27", "y^2=5*x^6+31*x^5+9*x^4+11*x^3+9*x^2+31*x+5", "y^2=14*x^6+28*x^5+15*x^4+30*x^3+10*x^2+28*x+31", "y^2=15*x^6+x^5+13*x^4+16*x^3+35*x^2+9*x+2", "y^2=20*x^6+2*x^5+28*x^4+x^3+x^2+6*x+17", "y^2=35*x^5+13*x^4+14*x^3+5*x^2+17*x", "y^2=15*x^6+12*x^5+32*x^4+14*x^3+32*x^2+13*x+20", "y^2=13*x^6+34*x^5+11*x^4+27*x^3+11*x^2+34*x+13", "y^2=24*x^6+7*x^5+10*x^4+x^3+28*x^2+33", "y^2=10*x^6+10*x^5+14*x^4+23*x^3+3*x^2+32*x+15", "y^2=19*x^6+6*x^5+24*x^4+26*x^3+19*x^2+8*x+18", "y^2=35*x^6+6*x^5+18*x^4+8*x^3+18*x^2+6*x+35", "y^2=25*x^5+19*x^4+24*x^3+33*x^2+17*x+23", "y^2=26*x^6+9*x^5+21*x^4+3*x^3+24*x^2+7*x+2", "y^2=25*x^5+8*x^4+7*x^3+16*x^2+3*x+6", "y^2=12*x^6+16*x^5+5*x^4+11*x^3+22*x^2+20*x+2", "y^2=14*x^6+9*x^5+19*x^4+6*x^3+19*x^2+9*x+14", "y^2=25*x^5+29*x^4+25*x^3+27*x^2+33*x+31", "y^2=2*x^6+8*x^5+27*x^4+3*x^3+10*x^2+x+28", "y^2=10*x^6+24*x^5+2*x^4+18*x^3+2*x^2+24*x+10", "y^2=12*x^6+16*x^5+10*x^4+12*x^2+26*x+16", "y^2=12*x^6+28*x^5+32*x^4+31*x^3+24*x^2+32*x+7", "y^2=24*x^6+16*x^5+17*x^4+3*x^3+6*x^2+34*x+4", "y^2=14*x^6+5*x^5+6*x^4+19*x^3+6*x^2+5*x+14", "y^2=7*x^6+12*x^5+10*x^4+33*x^3+30*x^2+20*x+2", "y^2=36*x^6+16*x^5+5*x^4+25*x^3+11*x^2+35*x+17", "y^2=27*x^6+20*x^5+22*x^4+14*x^3+17*x^2+17*x+30", "y^2=24*x^6+6*x^5+14*x^4+6*x^3+11*x^2+35*x+19", "y^2=15*x^6+18*x^5+5*x^4+12*x^3+12*x^2+27*x", "y^2=23*x^6+4*x^5+26*x^4+10*x^3+5*x^2+7*x+24", "y^2=22*x^5+18*x^4+6*x^2+23*x", "y^2=23*x^6+22*x^5+12*x^4+15*x^3+13*x^2+32*x+15", "y^2=11*x^6+17*x^5+35*x^4+25*x^3+34*x^2+19*x+25", "y^2=19*x^6+18*x^5+15*x^4+18*x^3+15*x^2+18*x+19", "y^2=14*x^6+17*x^5+27*x^4+x^3+34*x^2+32*x+34", "y^2=5*x^6+x^5+28*x^4+34*x^3+30*x^2+2*x+30", "y^2=13*x^6+15*x^5+30*x^4+21*x^3+3*x^2+10*x+35", "y^2=20*x^6+27*x^5+28*x^4+33*x^3+28*x^2+27*x+20", "y^2=5*x^6+35*x^5+34*x^4+27*x^3+30*x^2+10*x+29", "y^2=29*x^6+14*x^4+22*x^3+29*x^2+23*x+18", "y^2=11*x^6+10*x^5+24*x^4+27*x^2+9*x+36", "y^2=16*x^6+11*x^5+32*x^4+29*x^3+32*x^2+11*x+16", "y^2=22*x^6+13*x^5+14*x^4+23*x^3+33*x^2+30*x", "y^2=4*x^6+30*x^5+18*x^4+11*x^3+4*x^2+19*x+3", "y^2=20*x^6+32*x^5+12*x^4+11*x^3+3*x^2+15*x+19", "y^2=32*x^6+12*x^5+10*x^4+8*x^3+8*x^2+x+18", "y^2=32*x^6+21*x^5+6*x^4+7*x^3+22*x^2+19*x+36", "y^2=10*x^6+22*x^5+11*x^4+5*x^3+10*x^2+26*x+13", "y^2=23*x^6+3*x^5+33*x^4+8*x^3+30*x^2+23*x+22", "y^2=17*x^6+27*x^5+2*x^4+36*x^3+25*x^2+14*x+14", "y^2=27*x^6+4*x^5+32*x^4+25*x^3+28*x^2+36*x+33", "y^2=32*x^6+13*x^5+19*x^4+18*x^3+24*x^2+19*x+25", "y^2=6*x^6+25*x^5+33*x^3+23*x^2+3*x+19", "y^2=35*x^6+15*x^5+x^4+7*x^3+2*x^2+35*x+30", "y^2=x^6+16*x^5+6*x^4+3*x^3+2*x^2+x+6", "y^2=8*x^6+32*x^5+6*x^4+30*x^3+6*x^2+32*x+8", "y^2=26*x^6+19*x^5+32*x^4+7*x^3+10*x^2+16*x+33", "y^2=3*x^6+33*x^5+10*x^4+14*x^3+10*x^2+8*x+17", "y^2=7*x^6+10*x^5+14*x^4+10*x^3+14*x^2+10*x+7", "y^2=36*x^6+34*x^5+30*x^3+29*x^2+8*x+6", "y^2=x^6+22*x^5+20*x^4+11*x^3+21*x^2+9*x+25", "y^2=28*x^6+19*x^5+10*x^4+20*x^3+10*x^2+14*x+24", "y^2=24*x^6+19*x^5+16*x^4+6*x^3+16*x^2+19*x+24", "y^2=22*x^6+9*x^5+15*x^4+13*x^3+35*x^2+19*x+21", "y^2=34*x^6+22*x^5+19*x^4+31*x^3+23*x^2+12*x+32", "y^2=34*x^6+36*x^5+16*x^4+15*x^3+31*x^2+28*x+25", "y^2=2*x^6+8*x^5+x^4+12*x^3+23*x^2+16*x+6", "y^2=26*x^6+27*x^5+23*x^4+4*x^3+22*x", "y^2=29*x^6+12*x^5+5*x^4+19*x^3+30*x^2+9*x+2", "y^2=21*x^6+3*x^5+25*x^4+4*x^3+30*x^2+9*x+24", "y^2=6*x^6+30*x^5+17*x^4+22*x^3+5*x^2+10*x+17", "y^2=7*x^6+31*x^5+30*x^4+34*x^3+13*x^2+19*x+26", "y^2=27*x^6+31*x^5+14*x^4+32*x^3+26*x^2+7*x+3", "y^2=31*x^6+13*x^5+12*x^4+10*x^3+32", "y^2=13*x^6+4*x^5+19*x^4+30*x^3+23*x^2+31*x+10", "y^2=11*x^6+30*x^5+9*x^4+34*x^3+20*x^2+29*x+10", "y^2=17*x^6+14*x^5+22*x^4+19*x^3+29*x^2+34*x+18", "y^2=34*x^6+16*x^5+24*x^4+19*x^3+18*x^2+24*x+33", "y^2=14*x^6+12*x^5+21*x^4+26*x^3+24*x^2+20*x+14", "y^2=15*x^6+31*x^5+15*x^3+18*x+20", "y^2=15*x^5+25*x^4+36*x^3+7*x^2+26*x+8", "y^2=28*x^6+28*x^5+x^4+27*x^3+8*x^2+18*x+14", "y^2=21*x^6+19*x^5+15*x^4+36*x^3+23*x^2+8*x+12", "y^2=3*x^6+27*x^5+34*x^4+9*x^3+36*x^2+3*x+33", "y^2=17*x^6+6*x^5+15*x^4+6*x^3+34*x^2+11*x+27", "y^2=15*x^6+15*x^5+20*x^4+34*x^3+x^2+23*x", "y^2=7*x^5+24*x^4+9*x^3+x^2+9*x+21", "y^2=33*x^6+3*x^5+21*x^4+23*x^3+24*x^2+30*x+19", "y^2=9*x^6+31*x^5+28*x^4+2*x^3+29*x^2+4*x+29", "y^2=20*x^6+14*x^5+11*x^4+28*x^3+27*x^2+29*x+20", "y^2=5*x^6+25*x^4+30*x^2+18*x", "y^2=13*x^6+31*x^4+23*x^3+26*x^2+32*x+8", "y^2=16*x^6+18*x^5+20*x^4+31*x^2+2*x+29", "y^2=33*x^6+x^5+26*x^4+34*x^3+24*x^2+17*x+14", "y^2=5*x^6+20*x^5+26*x^4+36*x^3+26*x^2+20*x+5", "y^2=25*x^6+17*x^5+8*x^4+x^3+36*x^2+36*x+15", "y^2=24*x^6+31*x^5+13*x^4+27*x^3+5*x^2+28*x+1", "y^2=5*x^5+x^4+22*x^3+33*x^2+6*x", "y^2=25*x^6+24*x^5+3*x^4+31*x^3+30*x^2+35*x+15", "y^2=30*x^6+9*x^5+34*x^4+35*x^3+31*x^2+x+2", "y^2=2*x^6+9*x^5+7*x^4+4*x^3+4*x^2+29*x+34", "y^2=24*x^6+34*x^5+16*x^3+x^2+8*x+20", "y^2=21*x^6+19*x^5+21*x^4+20*x^3+9*x^2+5*x+16", "y^2=17*x^6+28*x^5+26*x^4+21*x^3+25*x^2+2", "y^2=2*x^6+5*x^4+25*x^3+17*x^2+6*x+27", "y^2=8*x^6+8*x^5+23*x^4+5*x^3+8*x^2+31*x+6", "y^2=20*x^6+10*x^5+13*x^4+26*x^3+11*x^2+31*x+5", "y^2=31*x^6+12*x^5+22*x^4+29*x^3+35*x^2+17*x+2", "y^2=32*x^6+8*x^5+7*x^4+15*x^3+20*x^2+4*x+18", "y^2=24*x^6+35*x^5+33*x^4+3*x^3+10*x^2+28*x", "y^2=9*x^5+16*x^4+27*x^3+34*x^2+4*x+19", "y^2=31*x^6+34*x^5+3*x^4+2*x^3+3*x^2+34*x+31", "y^2=13*x^6+x^5+19*x^3+21*x^2+12*x+15", "y^2=25*x^6+5*x^5+17*x^4+11*x^3+35*x^2+13*x+25", "y^2=22*x^6+16*x^5+10*x^4+33*x^3+32*x^2+19*x+11", "y^2=8*x^6+2*x^5+9*x^4+30*x^3+14*x^2+34*x+12"], "dim1_distinct": 2, "dim1_factors": 2, "dim2_distinct": 0, "dim2_factors": 0, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "endomorphism_ring_count": 72, "g": 2, "galois_groups": ["2T1", "2T1"], "geom_dim1_distinct": 2, "geom_dim1_factors": 2, "geom_dim2_distinct": 0, "geom_dim2_factors": 0, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 4, "geometric_extension_degree": 1, "geometric_galois_groups": ["2T1", "2T1"], "geometric_number_fields": ["2.0.3.1", "2.0.4.1"], "geometric_splitting_field": "4.0.144.1", "geometric_splitting_polynomials": [[1, 0, -1, 0, 1]], "group_structure_count": 6, "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 186, "is_cyclic": false, "is_geometrically_simple": false, "is_geometrically_squarefree": true, "is_primitive": true, "is_simple": false, "is_squarefree": true, "is_supersingular": false, "jacobian_count": 186, "label": "2.37.ai_cc", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 12, "newton_coelevation": 2, "newton_elevation": 0, "noncyclic_primes": [2], "number_fields": ["2.0.3.1", "2.0.4.1"], "p": 37, "p_rank": 2, "p_rank_deficit": 0, "poly": [1, -8, 54, -296, 1369], "poly_str": "1 -8 54 -296 1369 ", "primitive_models": [], "q": 37, "real_poly": [1, -8, -20], "simple_distinct": ["1.37.ak", "1.37.c"], "simple_factors": ["1.37.akA", "1.37.cA"], "simple_multiplicities": [1, 1], "singular_primes": ["3,10*F+1", "2,-F-1"], "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "4.0.144.1", "splitting_polynomials": [[1, 0, -1, 0, 1]], "twist_count": 24, "twists": [["2.37.am_dq", "2.1369.bs_bji", 2], ["2.37.i_cc", "2.1369.bs_bji", 2], ["2.37.m_dq", "2.1369.bs_bji", 2], ["2.37.b_cu", "2.50653.aea_elba", 3], ["2.37.n_ds", "2.50653.aea_elba", 3], ["2.37.aw_hm", "2.1874161.adw_abojxa", 4], ["2.37.ac_abu", "2.1874161.adw_abojxa", 4], ["2.37.c_abu", "2.1874161.adw_abojxa", 4], ["2.37.w_hm", "2.1874161.adw_abojxa", 4], ["2.37.an_ds", "2.2565726409.igca_bgqrfvny", 6], ["2.37.aj_ca", "2.2565726409.igca_bgqrfvny", 6], ["2.37.ad_cy", "2.2565726409.igca_bgqrfvny", 6], ["2.37.ab_cu", "2.2565726409.igca_bgqrfvny", 6], ["2.37.d_cy", "2.2565726409.igca_bgqrfvny", 6], ["2.37.j_ca", "2.2565726409.igca_bgqrfvny", 6], ["2.37.ax_hy", "2.6582952005840035281.acnimmye_czgmmoeqjpmkug", 12], ["2.37.an_di", "2.6582952005840035281.acnimmye_czgmmoeqjpmkug", 12], ["2.37.al_ck", "2.6582952005840035281.acnimmye_czgmmoeqjpmkug", 12], ["2.37.ab_acg", "2.6582952005840035281.acnimmye_czgmmoeqjpmkug", 12], ["2.37.b_acg", "2.6582952005840035281.acnimmye_czgmmoeqjpmkug", 12], ["2.37.l_ck", "2.6582952005840035281.acnimmye_czgmmoeqjpmkug", 12], ["2.37.n_di", "2.6582952005840035281.acnimmye_czgmmoeqjpmkug", 12], ["2.37.x_hy", "2.6582952005840035281.acnimmye_czgmmoeqjpmkug", 12]], "weak_equivalence_count": 155, "zfv_index": 3456, "zfv_index_factorization": [[2, 7], [3, 3]], "zfv_is_bass": false, "zfv_is_maximal": false, "zfv_plus_index": 1, "zfv_plus_index_factorization": [], "zfv_plus_norm": 6912, "zfv_singular_count": 4, "zfv_singular_primes": ["3,10*F+1", "2,-F-1"]}