# Stored data for abelian variety isogeny class 2.37.a_bq, downloaded from the LMFDB on 14 October 2025. {"abvar_count": 1412, "abvar_counts": [1412, 1993744, 2565628004, 3516135018496, 4808584389550532, 6582447054909024016, 9012061296162749754788, 12337531581630135848730624, 16890053810563105260371740676, 23122483831429062482992981483024], "abvar_counts_str": "1412 1993744 2565628004 3516135018496 4808584389550532 6582447054909024016 9012061296162749754788 12337531581630135848730624 16890053810563105260371740676 23122483831429062482992981483024 ", "all_polarized_product": false, "all_unpolarized_product": false, "angle_corank": 1, "angle_rank": 1, "angles": [0.346057717859653, 0.653942282140347], "center_dim": 4, "cohen_macaulay_max": 1, "curve_count": 38, "curve_counts": [38, 1454, 50654, 1876110, 69343958, 2565529598, 94931877134, 3512485053214, 129961739795078, 4808584406683214], "curve_counts_str": "38 1454 50654 1876110 69343958 2565529598 94931877134 3512485053214 129961739795078 4808584406683214 ", "curves": ["y^2=30*x^6+26*x^5+33*x^4+6*x^3+33*x^2+19*x+5", "y^2=23*x^6+15*x^5+29*x^4+12*x^3+29*x^2+x+10", "y^2=32*x^5+3*x^4+28*x^3+32*x^2+4*x+17", "y^2=27*x^5+6*x^4+19*x^3+27*x^2+8*x+34", "y^2=29*x^6+22*x^5+8*x^4+17*x^3+33*x^2+30*x+19", "y^2=21*x^6+7*x^5+16*x^4+34*x^3+29*x^2+23*x+1", "y^2=13*x^6+23*x^5+20*x^4+11*x^3+35*x^2+11*x+4", "y^2=26*x^6+9*x^5+3*x^4+22*x^3+33*x^2+22*x+8", "y^2=28*x^6+3*x^5+7*x^4+18*x^3+22*x^2+24*x+8", "y^2=19*x^6+6*x^5+14*x^4+36*x^3+7*x^2+11*x+16", "y^2=35*x^6+8*x^5+3*x^4+32*x^2+18*x+36", "y^2=33*x^6+16*x^5+6*x^4+27*x^2+36*x+35", "y^2=19*x^6+25*x^5+6*x^4+35*x^3+29*x^2+10*x+32", "y^2=x^6+13*x^5+12*x^4+33*x^3+21*x^2+20*x+27", "y^2=12*x^6+x^5+12*x^4+5*x^3+6*x^2+29*x+31", "y^2=9*x^6+28*x^5+27*x^4+28*x^3+32*x^2+7*x+15", "y^2=30*x^6+31*x^5+25*x^4+12*x^2+12*x+11", "y^2=23*x^6+25*x^5+13*x^4+24*x^2+24*x+22", "y^2=14*x^6+36*x^5+13*x^4+31*x^3+27*x^2+x+18", "y^2=28*x^6+35*x^5+26*x^4+25*x^3+17*x^2+2*x+36", "y^2=28*x^6+23*x^5+5*x^4+13*x^3+15*x^2+24*x+7", "y^2=19*x^6+9*x^5+10*x^4+26*x^3+30*x^2+11*x+14", "y^2=6*x^6+33*x^5+12*x^4+8*x^3+34*x^2+10*x+31", "y^2=12*x^6+29*x^5+24*x^4+16*x^3+31*x^2+20*x+25", "y^2=18*x^6+31*x^5+30*x^4+2*x^3+33*x^2+27*x+3", "y^2=11*x^6+30*x^4+18*x^3+8*x^2+14", "y^2=3*x^6+8*x^5+23*x^4+9*x^2+5*x+24", "y^2=24*x^6+4*x^5+19*x^4+18*x^2+17*x+34", "y^2=11*x^6+8*x^5+x^4+36*x^2+34*x+31", "y^2=28*x^6+23*x^5+4*x^4+23*x^3+32*x^2+29*x+17", "y^2=20*x^6+36*x^5+25*x^4+11*x^3+8*x^2+28*x+28", "y^2=3*x^6+35*x^5+13*x^4+22*x^3+16*x^2+19*x+19", "y^2=35*x^6+33*x^5+28*x^4+35*x^3+29*x^2+29*x+13", "y^2=33*x^6+29*x^5+19*x^4+33*x^3+21*x^2+21*x+26", "y^2=7*x^6+36*x^5+20*x^4+7*x^2+7*x+18", "y^2=12*x^6+17*x^5+32*x^4+36*x^3+24*x^2+26*x+1", "y^2=24*x^6+34*x^5+27*x^4+35*x^3+11*x^2+15*x+2", "y^2=21*x^6+6*x^5+11*x^4+26*x^3+14*x^2+30*x", "y^2=5*x^6+12*x^5+22*x^4+15*x^3+28*x^2+23*x", "y^2=12*x^6+x^5+28*x^4+26*x^3+6*x^2+21*x+17", "y^2=33*x^6+30*x^5+34*x^4+36*x^3+30*x^2+16*x+34", "y^2=29*x^6+23*x^5+31*x^4+35*x^3+23*x^2+32*x+31", "y^2=4*x^6+28*x^5+22*x^4+18*x^3+32*x^2+22*x+3", "y^2=8*x^6+19*x^5+7*x^4+36*x^3+27*x^2+7*x+6", "y^2=14*x^6+5*x^5+14*x^4+32*x^3+2*x^2+3*x+32", "y^2=28*x^6+10*x^5+28*x^4+27*x^3+4*x^2+6*x+27", "y^2=13*x^6+11*x^5+3*x^4+20*x^3+31*x^2+34*x+35", "y^2=26*x^6+22*x^5+6*x^4+3*x^3+25*x^2+31*x+33", "y^2=23*x^6+29*x^5+33*x^3+16", "y^2=9*x^6+21*x^5+29*x^3+32", "y^2=11*x^6+x^5+19*x^4+22*x^3+16*x^2+23*x+18", "y^2=22*x^6+2*x^5+x^4+7*x^3+32*x^2+9*x+36", "y^2=8*x^6+19*x^5+22*x^4+6*x^3+19*x^2+13*x+34", "y^2=16*x^6+x^5+7*x^4+12*x^3+x^2+26*x+31", "y^2=3*x^6+24*x^5+5*x^4+15*x^3+22*x^2+x+25", "y^2=6*x^6+11*x^5+10*x^4+30*x^3+7*x^2+2*x+13", "y^2=13*x^6+29*x^5+15*x^4+11*x^3+27*x^2+17*x+3", "y^2=22*x^6+2*x^5+5*x^4+19*x^3+31*x^2+33*x+27", "y^2=23*x^6+22*x^5+24*x^4+3*x^3+18*x^2+29*x+28", "y^2=21*x^5+30*x^4+34*x^3+5*x^2+3*x+11", "y^2=5*x^5+23*x^4+31*x^3+10*x^2+6*x+22", "y^2=24*x^6+6*x^5+26*x^4+26*x^3+25*x^2+23*x+32", "y^2=11*x^6+12*x^5+15*x^4+15*x^3+13*x^2+9*x+27", "y^2=33*x^6+31*x^5+23*x^4+10*x^3+23*x^2+23*x+25", "y^2=29*x^6+25*x^5+9*x^4+20*x^3+9*x^2+9*x+13", "y^2=20*x^6+9*x^5+2*x^4+9*x^3+14*x^2+13*x+20", "y^2=3*x^6+18*x^5+4*x^4+18*x^3+28*x^2+26*x+3", "y^2=3*x^6+5*x^5+33*x^4+16*x^3+3*x^2+21*x+24", "y^2=6*x^6+10*x^5+29*x^4+32*x^3+6*x^2+5*x+11", "y^2=30*x^6+25*x^5+2*x^4+26*x^3+31*x^2+34*x+18", "y^2=x^6+8*x^5+6*x^4+20*x^3+33*x^2+15*x+31", "y^2=2*x^6+16*x^5+12*x^4+3*x^3+29*x^2+30*x+25", "y^2=8*x^5+19*x^4+12*x^3+3*x^2+33*x+14", "y^2=16*x^5+x^4+24*x^3+6*x^2+29*x+28", "y^2=14*x^6+x^5+15*x^4+29*x^3+9*x^2+36*x+19", "y^2=28*x^6+2*x^5+30*x^4+21*x^3+18*x^2+35*x+1", "y^2=6*x^6+17*x^5+5*x^4+13*x^3+13*x^2+15*x+28", "y^2=12*x^6+34*x^5+10*x^4+26*x^3+26*x^2+30*x+19", "y^2=x^6+25*x^5+18*x^4+5*x^3+35*x^2+6*x+18", "y^2=2*x^6+13*x^5+36*x^4+10*x^3+33*x^2+12*x+36", "y^2=23*x^6+24*x^5+7*x^4+23*x^3+x^2+29*x+23", "y^2=9*x^6+11*x^5+14*x^4+9*x^3+2*x^2+21*x+9", "y^2=30*x^6+14*x^5+2*x^4+36*x^3+33*x^2+19*x+19"], "dim1_distinct": 0, "dim1_factors": 0, "dim2_distinct": 1, "dim2_factors": 1, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "endomorphism_ring_count": 6, "g": 2, "galois_groups": ["4T2"], "geom_dim1_distinct": 1, "geom_dim1_factors": 2, "geom_dim2_distinct": 0, "geom_dim2_factors": 0, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 2, "geometric_extension_degree": 2, "geometric_galois_groups": ["2T1"], "geometric_number_fields": ["2.0.232.1"], "geometric_splitting_field": "2.0.232.1", "geometric_splitting_polynomials": [[58, 0, 1]], "group_structure_count": 2, "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 83, "is_geometrically_simple": false, "is_geometrically_squarefree": false, "is_primitive": true, "is_simple": true, "is_squarefree": true, "is_supersingular": false, "jacobian_count": 83, "label": "2.37.a_bq", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 8, "newton_coelevation": 2, "newton_elevation": 0, "number_fields": ["4.0.215296.1"], "p": 37, "p_rank": 2, "p_rank_deficit": 0, "pic_prime_gens": [[1, 3, 1, 12], [1, 31, 1, 12]], "poly": [1, 0, 42, 0, 1369], "poly_str": "1 0 42 0 1369 ", "primitive_models": [], "principal_polarization_count": 90, "q": 37, "real_poly": [1, 0, -32], "simple_distinct": ["2.37.a_bq"], "simple_factors": ["2.37.a_bqA"], "simple_multiplicities": [1], "singular_primes": ["2,3*F+2*V-1"], "size": 126, "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "4.0.215296.1", "splitting_polynomials": [[225, 0, 28, 0, 1]], "twist_count": 4, "twists": [["2.37.a_abq", "2.1874161.cwy_khgfu", 4], ["2.37.ai_bg", "2.3512479453921.mgozk_ctenjkwufe", 8], ["2.37.i_bg", "2.3512479453921.mgozk_ctenjkwufe", 8]], "weak_equivalence_count": 6, "zfv_index": 32, "zfv_index_factorization": [[2, 5]], "zfv_is_bass": true, "zfv_is_maximal": false, "zfv_pic_size": 48, "zfv_plus_index": 4, "zfv_plus_index_factorization": [[2, 2]], "zfv_plus_norm": 13456, "zfv_singular_count": 2, "zfv_singular_primes": ["2,3*F+2*V-1"]}