# Stored data for abelian variety isogeny class 2.29.m_dq, downloaded from the LMFDB on 12 September 2025. {"abvar_count": 1296, "abvar_counts": [1296, 746496, 580039056, 501943910400, 420776440762896, 353761421238199296, 297565831467324606096, 250246453029175354982400, 210457102633816526419070736, 176994608276065645594275849216], "abvar_counts_str": "1296 746496 580039056 501943910400 420776440762896 353761421238199296 297565831467324606096 250246453029175354982400 210457102633816526419070736 176994608276065645594275849216 ", "angle_corank": 1, "angle_rank": 1, "angles": [0.688080637847892, 0.688080637847892], "center_dim": 2, "curve_count": 42, "curve_counts": [42, 886, 23778, 709678, 20514522, 594733606, 17250316818, 500246371678, 14507133448842, 420707309659606], "curve_counts_str": "42 886 23778 709678 20514522 594733606 17250316818 500246371678 14507133448842 420707309659606 ", "curves": ["y^2=23*x^6+15*x^5+13*x^4+12*x^3+22*x^2+27*x+25", "y^2=17*x^6+10*x^4+10*x^2+17", "y^2=17*x^6+24*x^5+26*x^4+18*x^3+11*x^2+23*x+18", "y^2=23*x^6+4*x^5+9*x^4+13*x^3+16*x^2+13*x+4", "y^2=6*x^6+26*x^5+7*x^4+x^3+25*x^2+15*x+13", "y^2=8*x^5+7*x^4+16*x^3+24*x^2+10*x", "y^2=22*x^6+10*x^5+24*x^4+3*x^3+25*x^2+25*x+5", "y^2=22*x^6+9*x^5+22*x^4+25*x^3+22*x^2+9*x+22", "y^2=11*x^6+19*x^4+19*x^2+11", "y^2=26*x^6+23*x^4+23*x^2+26", "y^2=28*x^6+20*x^5+26*x^4+16*x^3+26*x^2+20*x+28", "y^2=4*x^6+17*x^4+17*x^2+4", "y^2=9*x^6+19*x^5+2*x^4+18*x^3+15*x^2+3*x+16", "y^2=27*x^5+22*x^4+17*x^3+7*x^2+27*x", "y^2=27*x^6+28*x^5+2*x^4+5*x^3+11*x^2+6*x+8", "y^2=5*x^6+13*x^5+7*x^4+10*x^3+7*x^2+13*x+5", "y^2=22*x^6+11*x^5+23*x^4+15*x^3+23*x^2+11*x+22", "y^2=3*x^6+7*x^5+3*x^3+23*x+8", "y^2=25*x^5+12*x^4+22*x^3+3*x^2+7*x", "y^2=19*x^6+14*x^5+24*x^4+5*x^3+5*x^2+14*x+10", "y^2=7*x^6+13*x^5+24*x^4+27*x^3+28*x^2+4*x+4", "y^2=19*x^6+12*x^5+18*x^4+26*x^3+27*x^2+27*x+17", "y^2=7*x^6+27*x^5+19*x^4+13*x^3+26*x^2+12*x+28", "y^2=6*x^6+17*x^5+20*x^4+7*x^3+24*x^2+21*x+28", "y^2=x^6+11*x^4+11*x^2+1", "y^2=26*x^6+3*x^5+19*x^4+16*x^3+19*x^2+3*x+26"], "dim1_distinct": 1, "dim1_factors": 2, "dim2_distinct": 0, "dim2_factors": 0, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "g": 2, "galois_groups": ["2T1"], "geom_dim1_distinct": 1, "geom_dim1_factors": 2, "geom_dim2_distinct": 0, "geom_dim2_factors": 0, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 2, "geometric_extension_degree": 1, "geometric_galois_groups": ["2T1"], "geometric_number_fields": ["2.0.20.1"], "geometric_splitting_field": "2.0.20.1", "geometric_splitting_polynomials": [[5, 0, 1]], "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 26, "is_geometrically_simple": false, "is_geometrically_squarefree": false, "is_primitive": true, "is_simple": false, "is_squarefree": false, "is_supersingular": false, "jacobian_count": 26, "label": "2.29.m_dq", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 6, "newton_coelevation": 2, "newton_elevation": 0, "number_fields": ["2.0.20.1"], "p": 29, "p_rank": 2, "p_rank_deficit": 0, "poly": [1, 12, 94, 348, 841], "poly_str": "1 12 94 348 841 ", "primitive_models": [], "q": 29, "real_poly": [1, 12, 36], "simple_distinct": ["1.29.g"], "simple_factors": ["1.29.gA", "1.29.gB"], "simple_multiplicities": [2], "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "2.0.20.1", "splitting_polynomials": [[5, 0, 1]], "twist_count": 6, "twists": [["2.29.am_dq", "2.841.bs_dfi", 2], ["2.29.a_w", "2.841.bs_dfi", 2], ["2.29.ag_h", "2.24389.axo_icrm", 3], ["2.29.a_aw", "2.707281.doe_ggdqk", 4], ["2.29.g_h", "2.594823321.afcsq_kjmruyo", 6]]}