# Stored data for abelian variety isogeny class 2.29.i_cw, downloaded from the LMFDB on 29 October 2025. {"abvar_count": 1156, "abvar_counts": [1156, 781456, 581099236, 500131840000, 421058662641796, 353776861855605136, 297554063636796877156, 250247882215148912640000, 210457222655404449074812036, 176994548956766044378792003216], "abvar_counts_str": "1156 781456 581099236 500131840000 421058662641796 353776861855605136 297554063636796877156 250247882215148912640000 210457222655404449074812036 176994548956766044378792003216 ", "angle_corank": 1, "angle_rank": 1, "angles": [0.621118941590843, 0.621118941590843], "center_dim": 2, "curve_count": 38, "curve_counts": [38, 926, 23822, 707118, 20528278, 594759566, 17249634622, 500249228638, 14507141722118, 420707168660606], "curve_counts_str": "38 926 23822 707118 20528278 594759566 17249634622 500249228638 14507141722118 420707168660606 ", "curves": ["y^2=22*x^6+27*x^5+25*x^4+9*x^3+x^2+18*x+6", "y^2=24*x^6+4*x^4+4*x^2+24", "y^2=19*x^6+15*x^5+18*x^4+2*x^3+12*x^2+26*x+11", "y^2=14*x^6+19*x^5+16*x^4+24*x^3+3*x^2+27*x+3", "y^2=23*x^6+2*x^5+15*x^4+6*x^3+9*x^2+25*x+22", "y^2=21*x^6+18*x^5+23*x^4+16*x^3+7*x^2+10*x+17", "y^2=13*x^6+15*x^5+13*x^4+5*x^3+11*x^2+17*x+6", "y^2=10*x^6+17*x^5+13*x^4+16*x^3+28*x^2+14*x+18", "y^2=13*x^6+27*x^4+9*x^3+5*x^2+18*x+5"], "dim1_distinct": 1, "dim1_factors": 2, "dim2_distinct": 0, "dim2_factors": 0, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "g": 2, "galois_groups": ["2T1"], "geom_dim1_distinct": 1, "geom_dim1_factors": 2, "geom_dim2_distinct": 0, "geom_dim2_factors": 0, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 2, "geometric_extension_degree": 1, "geometric_galois_groups": ["2T1"], "geometric_number_fields": ["2.0.4.1"], "geometric_splitting_field": "2.0.4.1", "geometric_splitting_polynomials": [[1, 0, 1]], "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 9, "is_geometrically_simple": false, "is_geometrically_squarefree": false, "is_primitive": true, "is_simple": false, "is_squarefree": false, "is_supersingular": false, "jacobian_count": 9, "label": "2.29.i_cw", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 12, "newton_coelevation": 2, "newton_elevation": 0, "number_fields": ["2.0.4.1"], "p": 29, "p_rank": 2, "p_rank_deficit": 0, "poly": [1, 8, 74, 232, 841], "poly_str": "1 8 74 232 841 ", "primitive_models": [], "q": 29, "real_poly": [1, 8, 16], "simple_distinct": ["1.29.e"], "simple_factors": ["1.29.eA", "1.29.eB"], "simple_multiplicities": [2], "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "2.0.4.1", "splitting_polynomials": [[1, 0, 1]], "twist_count": 16, "twists": [["2.29.ai_cw", "2.841.dg_fco", 2], ["2.29.a_bq", "2.841.dg_fco", 2], ["2.29.ae_an", "2.24389.avw_hjmg", 3], ["2.29.au_gc", "2.707281.agi_dcwmw", 4], ["2.29.ao_du", "2.707281.agi_dcwmw", 4], ["2.29.ag_s", "2.707281.agi_dcwmw", 4], ["2.29.a_abq", "2.707281.agi_dcwmw", 4], ["2.29.g_s", "2.707281.agi_dcwmw", 4], ["2.29.o_du", "2.707281.agi_dcwmw", 4], ["2.29.u_gc", "2.707281.agi_dcwmw", 4], ["2.29.e_an", "2.594823321.adqie_hdrbsyg", 6], ["2.29.a_abo", "2.500246412961.geffg_ohiteknco", 8], ["2.29.a_bo", "2.500246412961.geffg_ohiteknco", 8], ["2.29.ak_ct", "2.353814783205469041.bdfbzjw_hszuujhrzjlwg", 12], ["2.29.k_ct", "2.353814783205469041.bdfbzjw_hszuujhrzjlwg", 12]]}