# Stored data for abelian variety isogeny class 2.29.g_bi, downloaded from the LMFDB on 27 November 2025. {"abvar_count": 1056, "abvar_counts": [1056, 734976, 597925152, 500583333888, 420343198134816, 353839471990988544, 297561093096345991968, 250246615156780747456512, 210457289799515741563503648, 176994544336773302622304141056], "abvar_counts_str": "1056 734976 597925152 500583333888 420343198134816 353839471990988544 297561093096345991968 250246615156780747456512 210457289799515741563503648 176994544336773302622304141056 ", "angle_corank": 0, "angle_rank": 2, "angles": [0.417981724651119, 0.801573262539672], "center_dim": 4, "cohen_macaulay_max": 2, "curve_count": 36, "curve_counts": [36, 874, 24516, 707758, 20493396, 594864826, 17250042132, 500246695774, 14507146350468, 420707157679114], "curve_counts_str": "36 874 24516 707758 20493396 594864826 17250042132 500246695774 14507146350468 420707157679114 ", "curves": ["y^2=x^6+4*x^5+24*x^4+21*x^3+8*x^2+13*x+11", "y^2=24*x^6+28*x^5+2*x^4+17*x^3+10*x^2+12*x+10", "y^2=x^6+20*x^5+20*x^3+x^2+13*x+5", "y^2=27*x^6+2*x^5+13*x^3+17*x^2+13*x+13", "y^2=3*x^6+25*x^5+2*x^4+26*x^3+23*x^2+18*x+28", "y^2=20*x^6+17*x^5+16*x^4+10*x^3+24*x^2+8*x+24", "y^2=13*x^6+x^5+19*x^4+x^3+12*x^2+3*x+24", "y^2=13*x^6+9*x^5+4*x^4+19*x^3+20*x^2+23*x+13", "y^2=20*x^6+x^5+10*x^4+12*x^2+15*x+26", "y^2=14*x^6+14*x^5+19*x^4+10*x^3+23*x^2+x+20", "y^2=4*x^6+2*x^5+10*x^4+6*x^3+8*x^2+18*x+20", "y^2=11*x^6+27*x^4+27*x^3+20*x^2+3*x+21", "y^2=6*x^6+12*x^5+3*x^4+15*x^3+16*x^2+12*x+1", "y^2=8*x^6+12*x^5+19*x^4+13*x^3+25*x^2+9*x+4", "y^2=16*x^6+6*x^5+6*x^4+14*x^3+18*x^2+25*x+28", "y^2=3*x^6+25*x^5+25*x^3+15*x^2+21*x+1", "y^2=16*x^6+27*x^5+3*x^4+5*x^3+10*x^2+14*x+21", "y^2=9*x^6+16*x^5+5*x^4+8*x^3+26*x^2+16*x+20", "y^2=16*x^6+16*x^5+11*x^4+9*x^3+25*x^2+24*x+2", "y^2=12*x^6+5*x^5+2*x^4+5*x^3+15*x^2+23", "y^2=15*x^6+22*x^5+2*x^4+6*x^3+18*x^2+21*x+2", "y^2=4*x^6+10*x^5+8*x^4+7*x^3+12*x^2+6*x+5", "y^2=12*x^6+23*x^5+17*x^4+9*x^3+19*x^2+20*x+3", "y^2=6*x^6+x^5+2*x^4+20*x^3+16*x^2+22*x+4", "y^2=12*x^6+16*x^5+23*x^4+26*x^3+13*x^2+24*x+2", "y^2=27*x^6+17*x^5+4*x^4+25*x^3+13*x^2+14*x+16", "y^2=25*x^6+21*x^5+3*x^4+26*x^3+23*x^2+23*x+21", "y^2=20*x^6+13*x^5+24*x^4+20*x^3+15*x^2+26*x+6", "y^2=6*x^6+3*x^5+13*x^4+11*x^3+20*x^2+3*x+5", "y^2=25*x^6+8*x^5+2*x^4+21*x^3+16*x^2+2*x+7", "y^2=13*x^6+20*x^5+28*x^4+x^3+14*x^2+16*x+11", "y^2=19*x^5+4*x^4+18*x^3+14*x^2+5*x+28", "y^2=28*x^6+x^5+16*x^4+3*x^3+13*x^2+2*x+1", "y^2=22*x^6+10*x^5+20*x^4+5*x^3+28*x^2+x+21", "y^2=20*x^6+18*x^5+15*x^4+21*x^3+10*x^2+15*x+20", "y^2=16*x^6+27*x^5+11*x^4+20*x^3+5*x^2+7*x+17", "y^2=x^6+25*x^5+3*x^4+2*x^3+16*x^2+7*x+9", "y^2=22*x^6+16*x^5+16*x^4+6*x^3+6*x^2+6*x+19", "y^2=9*x^6+5*x^5+20*x^4+11*x^3+26*x^2+2*x", "y^2=7*x^6+3*x^5+6*x^4+2*x^3+21*x^2+20*x+20", "y^2=14*x^6+24*x^5+22*x^4+27*x^3+13*x^2+18*x+20", "y^2=13*x^6+6*x^5+23*x^4+7*x^2+5*x+4", "y^2=18*x^6+27*x^5+7*x^4+10*x^3+2*x^2+16*x+27", "y^2=4*x^6+19*x^5+14*x^4+2*x^3+25*x^2+13*x+13", "y^2=28*x^6+25*x^5+10*x^4+10*x^3+5*x^2+6*x+7", "y^2=15*x^6+14*x^5+16*x^4+14*x^2+15*x+13", "y^2=6*x^5+x^4+3*x^3+25*x^2+4*x+12", "y^2=18*x^6+2*x^5+4*x^4+13*x^3+15*x^2+5*x+21", "y^2=4*x^6+12*x^5+7*x^4+19*x^3+6*x^2+14*x+10", "y^2=17*x^6+7*x^5+8*x^4+17*x^3+3*x^2+14*x+16", "y^2=27*x^6+10*x^5+18*x^4+6*x^3+6*x^2+11*x+5", "y^2=24*x^6+8*x^5+10*x^4+21*x^3+28*x^2+19*x+5", "y^2=26*x^6+x^5+8*x^4+21*x^3+9*x^2+28*x+3", "y^2=2*x^6+22*x^5+9*x^4+20*x^3+22*x^2+14*x+1", "y^2=6*x^6+9*x^5+26*x^4+3*x^3+2*x^2+27*x+1", "y^2=7*x^6+14*x^5+16*x^4+27*x^3+21*x^2+17*x", "y^2=20*x^6+8*x^5+9*x^4+4*x^3+4*x^2+8*x+1", "y^2=24*x^6+13*x^5+6*x^4+18*x^3+23*x^2+11*x+28", "y^2=25*x^6+5*x^5+25*x^4+6*x^3+5*x^2+3*x+1", "y^2=x^6+22*x^5+9*x^4+23*x^3+20*x^2+13*x+12", "y^2=21*x^6+13*x^5+24*x^4+16*x^3+7*x^2+22*x", "y^2=6*x^6+x^5+22*x^4+23*x^3+x^2+9*x+13", "y^2=6*x^6+2*x^5+13*x^4+x^3+6*x^2+3*x+6", "y^2=14*x^6+15*x^5+4*x^4+8*x^3+27*x^2+25*x+6", "y^2=4*x^6+2*x^5+26*x^4+13*x^3+27*x^2+3*x+26", "y^2=7*x^6+25*x^5+8*x^4+9*x^3+14*x^2+20*x+1", "y^2=23*x^6+5*x^5+14*x^4+3*x^3+15*x^2+23*x+27", "y^2=7*x^6+19*x^5+27*x^4+16*x^3+9*x^2+2*x+24", "y^2=6*x^5+27*x^4+16*x^3+20*x^2+3*x+1", "y^2=13*x^6+18*x^5+22*x^4+15*x^2+17*x+6", "y^2=16*x^6+17*x^5+24*x^4+27*x^3+8*x^2+2*x+20", "y^2=24*x^6+4*x^4+x^3+2*x^2+5*x+16", "y^2=7*x^6+17*x^5+12*x^4+8*x^3+15*x^2+19*x+11", "y^2=9*x^6+5*x^5+26*x^4+20*x^3+15*x^2+21*x", "y^2=5*x^6+25*x^5+28*x^4+x^3+22*x^2+23*x+18", "y^2=20*x^5+6*x^4+12*x^3+x^2+8*x+11", "y^2=8*x^6+3*x^5+8*x^4+24*x^3+20*x^2+23*x+1", "y^2=15*x^6+26*x^5+3*x^4+18*x^3+14*x^2+25*x+9", "y^2=12*x^6+10*x^5+20*x^3+21*x^2+22*x+10", "y^2=13*x^6+8*x^5+6*x^4+27*x^3+25*x^2+6*x+22", "y^2=15*x^6+10*x^5+25*x^4+18*x^3+15*x^2+16*x+18", "y^2=10*x^6+4*x^5+5*x^4+19*x^3+5*x^2+3*x+2", "y^2=23*x^6+6*x^5+9*x^4+4*x^3+12*x^2+25*x+15", "y^2=26*x^6+11*x^5+9*x^4+24*x^3+7", "y^2=21*x^6+27*x^5+21*x^3+17*x+12", "y^2=21*x^6+4*x^5+12*x^4+11*x^3+17*x^2+19*x+18", "y^2=8*x^6+9*x^5+28*x^4+20*x^3+12*x^2+16*x+25", "y^2=10*x^6+24*x^5+2*x^4+7*x^3+15*x^2+5*x+6", "y^2=25*x^6+4*x^5+26*x^4+2*x^3+12*x^2+x+20", "y^2=10*x^5+28*x^4+11*x^3+8*x^2+6*x+4", "y^2=15*x^6+17*x^5+19*x^4+x^3+20*x^2+15*x+17", "y^2=12*x^6+4*x^5+10*x^4+27*x^3+14*x^2+9*x+10", "y^2=12*x^6+x^5+12*x^4+27*x^3+7*x^2+12*x+15", "y^2=15*x^6+26*x^5+20*x^4+26*x^3+5*x^2+11*x+9", "y^2=3*x^6+28*x^5+27*x^4+14*x^3+19*x^2+5*x+4", "y^2=9*x^6+2*x^5+x^4+16*x^3+6*x^2+2*x+5", "y^2=4*x^6+17*x^5+12*x^4+20*x^3+23*x^2+14*x+27", "y^2=9*x^6+23*x^5+25*x^4+14*x^3+27*x^2+x+18", "y^2=x^6+6*x^5+25*x^4+24*x^3+12*x^2+26*x+24", "y^2=17*x^6+18*x^5+18*x^4+x^3+17*x^2+x+23", "y^2=11*x^6+26*x^5+7*x^4+13*x^3+19*x^2+6*x+20", "y^2=27*x^6+7*x^5+13*x^4+9*x^3+26*x^2+15*x+25", "y^2=10*x^6+4*x^5+16*x^4+14*x^3+11*x^2+10*x+27", "y^2=28*x^6+19*x^5+7*x^4+27*x^3+7*x^2+6*x+1", "y^2=6*x^6+15*x^5+24*x^4+19*x^3+22*x^2+28*x", "y^2=10*x^6+5*x^5+18*x^4+27*x^3+25*x^2+10*x+17", "y^2=25*x^6+15*x^5+16*x^4+22*x^3+19*x^2+3*x+7", "y^2=12*x^6+23*x^5+6*x^4+17*x^3+25*x^2+16*x+5", "y^2=25*x^6+3*x^5+27*x^4+16*x^3+12*x^2+19*x+25", "y^2=26*x^6+25*x^5+4*x^4+21*x^3+2*x^2+10*x+18", "y^2=13*x^6+2*x^5+10*x^4+24*x^3+6*x^2+18*x+19", "y^2=9*x^6+22*x^5+x^4+18*x^2+2*x+28", "y^2=21*x^6+13*x^5+19*x^4+10*x^3+3*x^2+28*x+22", "y^2=25*x^6+16*x^4+14*x^3+13*x^2+28*x+16", "y^2=2*x^6+8*x^5+13*x^4+27*x^3+16*x^2+10*x+7", "y^2=10*x^6+3*x^5+3*x^4+5*x^3+25*x^2+18*x+23", "y^2=27*x^6+14*x^5+22*x^4+x^3+28*x^2+18*x+19", "y^2=17*x^6+4*x^5+17*x^4+18*x^3+17*x+9", "y^2=22*x^6+x^5+15*x^3+6*x^2+2*x+13", "y^2=22*x^6+27*x^5+10*x^4+3*x^3+2*x^2+17*x", "y^2=8*x^6+18*x^5+20*x^4+9*x^3+2*x^2+5*x+26", "y^2=13*x^6+18*x^5+18*x^4+17*x^3+5*x^2+x+8", "y^2=4*x^6+27*x^5+21*x^4+22*x^3+2*x^2+24*x+6", "y^2=24*x^6+19*x^5+2*x^4+4*x^3+25*x^2+4*x+23", "y^2=11*x^6+18*x^5+6*x^4+8*x^3+19*x^2+5*x+24", "y^2=25*x^5+20*x^4+25*x^3+3*x^2+17*x+15", "y^2=5*x^6+12*x^5+22*x^4+21*x^3+10*x^2+18*x+5", "y^2=8*x^6+5*x^5+3*x^4+7*x^3+14*x^2+12*x+6", "y^2=15*x^6+12*x^5+21*x^4+x^3+23*x^2+5*x+4", "y^2=9*x^6+9*x^5+15*x^4+27*x^3+2*x^2+20", "y^2=23*x^6+27*x^4+15*x^3+25*x^2+22*x+25", "y^2=20*x^6+7*x^5+25*x^4+x^3+28*x^2+24*x+7"], "dim1_distinct": 0, "dim1_factors": 0, "dim2_distinct": 1, "dim2_factors": 1, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "endomorphism_ring_count": 6, "g": 2, "galois_groups": ["4T3"], "geom_dim1_distinct": 0, "geom_dim1_factors": 0, "geom_dim2_distinct": 1, "geom_dim2_factors": 1, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 4, "geometric_extension_degree": 1, "geometric_galois_groups": ["4T3"], "geometric_number_fields": ["4.0.291852.2"], "geometric_splitting_field": "4.0.291852.2", "geometric_splitting_polynomials": [[108, 36, 19, -1, 1]], "group_structure_count": 5, "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 132, "is_geometrically_simple": true, "is_geometrically_squarefree": true, "is_primitive": true, "is_simple": true, "is_squarefree": true, "is_supersingular": false, "jacobian_count": 132, "label": "2.29.g_bi", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 2, "newton_coelevation": 2, "newton_elevation": 0, "number_fields": ["4.0.291852.2"], "p": 29, "p_rank": 2, "p_rank_deficit": 0, "poly": [1, 6, 34, 174, 841], "poly_str": "1 6 34 174 841 ", "primitive_models": [], "q": 29, "real_poly": [1, 6, -24], "simple_distinct": ["2.29.g_bi"], "simple_factors": ["2.29.g_biA"], "simple_multiplicities": [1], "singular_primes": ["2,2*F^2+2*F+3*V+21"], "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "4.0.291852.2", "splitting_polynomials": [[108, 36, 19, -1, 1]], "twist_count": 2, "twists": [["2.29.ag_bi", "2.841.bg_bcw", 2]], "weak_equivalence_count": 8, "zfv_index": 16, "zfv_index_factorization": [[2, 4]], "zfv_is_bass": false, "zfv_is_maximal": false, "zfv_plus_index": 2, "zfv_plus_index_factorization": [[2, 1]], "zfv_plus_norm": 4288, "zfv_singular_count": 2, "zfv_singular_primes": ["2,2*F^2+2*F+3*V+21"]}