# Stored data for abelian variety isogeny class 2.29.e_i, downloaded from the LMFDB on 04 November 2025. {"abvar_count": 970, "abvar_counts": [970, 708100, 602580490, 501405610000, 420452233965850, 353814782017144900, 297552091024222210810, 250247219487274690560000, 210457390898773729307440330, 176994576151110229818192602500], "abvar_counts_str": "970 708100 602580490 501405610000 420452233965850 353814782017144900 297552091024222210810 250247219487274690560000 210457390898773729307440330 176994576151110229818192602500 ", "all_polarized_product": false, "all_unpolarized_product": false, "angle_corank": 1, "angle_rank": 1, "angles": [0.334584205614877, 0.834584205614877], "center_dim": 4, "cohen_macaulay_max": 1, "curve_count": 34, "curve_counts": [34, 842, 24706, 708918, 20498714, 594823322, 17249520266, 500247903838, 14507153319394, 420707233300202], "curve_counts_str": "34 842 24706 708918 20498714 594823322 17249520266 500247903838 14507153319394 420707233300202 ", "curves": ["y^2=17*x^6+16*x^5+10*x^4+10*x^2+13*x+17", "y^2=2*x^6+26*x^5+14*x^4+19*x^3+6*x^2+11*x", "y^2=18*x^6+17*x^5+25*x^4+24*x^3+7*x^2+23*x+9", "y^2=5*x^6+22*x^5+28*x^4+19*x^3+13*x^2+9*x+19", "y^2=24*x^6+5*x^5+5*x^4+19*x^3+25*x^2+28*x", "y^2=24*x^6+9*x^5+24*x^4+6*x^3+4*x^2+13*x+11", "y^2=24*x^6+24*x^5+8*x^3+14*x^2+14*x", "y^2=15*x^6+11*x^5+4*x^4+24*x^3+5*x^2+26*x+6", "y^2=16*x^6+14*x^4+28*x^3+14*x^2+27*x+6", "y^2=23*x^6+28*x^5+20*x^4+15*x^3+10*x^2+x+15", "y^2=18*x^6+10*x^5+12*x^4+15*x^3+6*x^2+23*x+23", "y^2=3*x^6+4*x^5+12*x^4+19*x^3+19*x^2+11*x+16", "y^2=18*x^6+14*x^5+20*x^4+4*x^3+27*x^2+17*x+25", "y^2=14*x^5+23*x^4+26*x^3+12*x^2+23*x", "y^2=17*x^5+13*x^4+2*x^3+12*x^2+26*x+22", "y^2=8*x^6+25*x^5+4*x^4+17*x^3+2*x^2+8*x+17", "y^2=24*x^6+17*x^5+19*x^4+11*x^3+20*x^2+12*x+12", "y^2=x^6+22*x^5+16*x^4+22*x^3+6*x+4", "y^2=25*x^6+10*x^5+28*x^4+6*x^3+4*x^2+14*x+11", "y^2=16*x^6+26*x^5+25*x^4+27*x^3+17*x^2+12*x+22", "y^2=20*x^6+4*x^5+16*x^4+17*x^3+26*x^2+20*x+13", "y^2=25*x^6+4*x^5+3*x^4+26*x^3+28*x^2+3*x+2", "y^2=10*x^6+22*x^5+27*x^4+19*x^3+22*x^2+11", "y^2=11*x^6+13*x^5+16*x^4+19*x^3+7*x^2+25*x+11", "y^2=24*x^6+24*x^5+22*x^4+10*x^3+10*x^2+13*x+17", "y^2=17*x^6+21*x^4+28*x^3+5*x^2+16*x+2", "y^2=10*x^6+16*x^5+25*x^4+28*x^3+18*x^2+11*x+20", "y^2=20*x^6+6*x^5+4*x^4+21*x^3+23*x^2+20*x+6", "y^2=16*x^6+24*x^5+x^4+26*x^3+15*x^2+2*x+20", "y^2=5*x^6+11*x^5+26*x^4+11*x^3+22*x^2+16*x+27", "y^2=9*x^6+6*x^5+10*x^4+27*x^3+3*x^2+24*x+23", "y^2=28*x^6+12*x^5+21*x^4+21*x^2+17*x+28", "y^2=28*x^6+3*x^5+24*x^4+9*x^3+x^2+27*x+28", "y^2=22*x^5+7*x^4+22*x^3+24*x^2+5*x+25", "y^2=3*x^6+14*x^5+25*x^4+6*x^3+27*x^2+4*x+2", "y^2=27*x^6+x^5+12*x^4+16*x^3+25*x^2+19*x+5", "y^2=23*x^6+20*x^5+27*x^4+x^3+x^2+14*x", "y^2=16*x^6+3*x^5+25*x^4+20*x^3+2*x^2+28*x+8", "y^2=28*x^6+19*x^5+28*x^4+x^3+18*x^2+24*x+11", "y^2=19*x^6+16*x^5+15*x^4+17*x^3+15*x^2+7*x+12", "y^2=20*x^6+5*x^5+13*x^4+11*x^3+5*x^2+10*x+23", "y^2=5*x^6+8*x^5+16*x^4+12*x^3+8*x^2+23*x+9", "y^2=6*x^5+14*x^4+x^3+8*x^2+2*x+16", "y^2=17*x^6+22*x^5+25*x^4+26*x^3+2*x^2+22*x+6", "y^2=24*x^6+12*x^5+20*x^4+17*x^3+4*x^2+27*x+8", "y^2=19*x^6+6*x^5+23*x^4+25*x^3+6*x^2+17*x+8", "y^2=7*x^6+14*x^5+22*x^4+16*x^3+15*x^2+8*x+8", "y^2=22*x^6+9*x^5+22*x^4+22*x^2+20*x+22", "y^2=14*x^6+22*x^5+25*x^4+25*x^2+7*x+14", "y^2=27*x^6+22*x^5+7*x^4+17*x^3+19*x^2+14*x+23", "y^2=19*x^6+17*x^5+22*x^4+6*x^3+7*x^2+5*x+15", "y^2=25*x^6+20*x^5+23*x^4+2*x^3+20*x^2+19*x+6"], "dim1_distinct": 0, "dim1_factors": 0, "dim2_distinct": 1, "dim2_factors": 1, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "endomorphism_ring_count": 6, "g": 2, "galois_groups": ["4T2"], "geom_dim1_distinct": 1, "geom_dim1_factors": 2, "geom_dim2_distinct": 0, "geom_dim2_factors": 0, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 2, "geometric_extension_degree": 4, "geometric_galois_groups": ["2T1"], "geometric_number_fields": ["2.0.24.1"], "geometric_splitting_field": "2.0.24.1", "geometric_splitting_polynomials": [[6, 0, 1]], "group_structure_count": 1, "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 52, "is_geometrically_simple": false, "is_geometrically_squarefree": false, "is_primitive": true, "is_simple": true, "is_squarefree": true, "is_supersingular": false, "jacobian_count": 52, "label": "2.29.e_i", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 24, "newton_coelevation": 2, "newton_elevation": 0, "number_fields": ["4.0.2304.2"], "p": 29, "p_rank": 2, "p_rank_deficit": 0, "pic_prime_gens": [[1, 2, 1, 2], [1, 5, 1, 30]], "poly": [1, 4, 8, 116, 841], "poly_str": "1 4 8 116 841 ", "primitive_models": [], "principal_polarization_count": 52, "q": 29, "real_poly": [1, 4, -50], "simple_distinct": ["2.29.e_i"], "simple_factors": ["2.29.e_iA"], "simple_multiplicities": [1], "singular_primes": ["5,F+20*V+77", "3,7*F^2-6*F+V+1"], "size": 56, "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "4.0.2304.2", "splitting_polynomials": [[9, 0, 0, 0, 1]], "twist_count": 6, "twists": [["2.29.ae_i", "2.841.a_bfm", 2], ["2.29.a_aby", "2.500246412961.dgvlk_hltnqfyre", 8], ["2.29.a_by", "2.500246412961.dgvlk_hltnqfyre", 8], ["2.29.as_fh", "2.125184900814733057351483732809459681.aotwwlexfpqoeu_ddzuccrstkejjlbjdtboaygkxy", 24], ["2.29.s_fh", "2.125184900814733057351483732809459681.aotwwlexfpqoeu_ddzuccrstkejjlbjdtboaygkxy", 24]], "weak_equivalence_count": 6, "zfv_index": 225, "zfv_index_factorization": [[3, 2], [5, 2]], "zfv_is_bass": true, "zfv_is_maximal": false, "zfv_pic_size": 30, "zfv_plus_index": 3, "zfv_plus_index_factorization": [[3, 1]], "zfv_plus_norm": 2500, "zfv_singular_count": 4, "zfv_singular_primes": ["5,F+20*V+77", "3,7*F^2-6*F+V+1"]}