# Stored data for abelian variety isogeny class 2.29.ag_h, downloaded from the LMFDB on 07 September 2025. {"abvar_count": 669, "abvar_counts": [669, 688401, 580039056, 499399817049, 420672633832749, 353761421238199296, 297554433352804628949, 250246484005933984828329, 210457102633816526419070736, 176994560088633993534009249201], "abvar_counts_str": "669 688401 580039056 499399817049 420672633832749 353761421238199296 297554433352804628949 250246484005933984828329 210457102633816526419070736 176994560088633993534009249201 ", "angle_corank": 1, "angle_rank": 1, "angles": [0.0214139711812251, 0.645252695485442], "center_dim": 4, "cohen_macaulay_max": 1, "curve_count": 24, "curve_counts": [24, 820, 23778, 706084, 20509464, 594733606, 17249656056, 500246433604, 14507133448842, 420707195120500], "curve_counts_str": "24 820 23778 706084 20509464 594733606 17249656056 500246433604 14507133448842 420707195120500 ", "curves": ["y^2=22*x^6+17*x^5+19*x^4+28*x^3+3*x^2+28*x+22", "y^2=15*x^6+3*x^5+26*x^4+15*x^3+7*x^2+12", "y^2=21*x^6+3*x^5+28*x^4+19*x^3+9*x^2+7*x+21", "y^2=8*x^6+27*x^5+22*x^4+18*x^3+7*x^2+21*x+8", "y^2=17*x^6+19*x^5+28*x^4+25*x^3+18*x^2+3*x+12", "y^2=11*x^6+6*x^5+24*x^4+20*x^3+9*x^2+8*x+1", "y^2=26*x^6+11*x^5+22*x^4+2*x^3+8*x^2+2*x+9", "y^2=2*x^6+16*x^5+16*x^4+11*x^3+14*x^2+19*x+1", "y^2=3*x^6+15*x^5+10*x^4+8*x^3+26*x^2+7*x+10", "y^2=6*x^6+27*x^5+23*x^4+7*x^2+9*x+6", "y^2=2*x^6+12*x^5+28*x^4+21*x^3+4*x^2+15*x+24", "y^2=23*x^6+4*x^5+3*x^4+5*x^3+x^2+20*x+23", "y^2=24*x^6+3*x^5+11*x^4+15*x^3+8*x^2+25*x+24", "y^2=16*x^6+28*x^5+16*x^4+11*x^3+5*x^2+13*x+19", "y^2=19*x^6+4*x^5+15*x^4+19*x^3+x^2+24*x+16", "y^2=3*x^6+19*x^5+26*x^4+25*x^3+22*x^2+26*x+21", "y^2=21*x^6+4*x^5+15*x^4+17*x^3+20*x^2+6*x+21", "y^2=12*x^6+13*x^5+13*x^4+25*x^3+19*x^2+11*x+20"], "dim1_distinct": 0, "dim1_factors": 0, "dim2_distinct": 1, "dim2_factors": 1, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "endomorphism_ring_count": 4, "g": 2, "galois_groups": ["4T2"], "geom_dim1_distinct": 1, "geom_dim1_factors": 2, "geom_dim2_distinct": 0, "geom_dim2_factors": 0, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 2, "geometric_extension_degree": 3, "geometric_galois_groups": ["2T1"], "geometric_number_fields": ["2.0.20.1"], "geometric_splitting_field": "2.0.20.1", "geometric_splitting_polynomials": [[5, 0, 1]], "group_structure_count": 1, "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 18, "is_geometrically_simple": false, "is_geometrically_squarefree": false, "is_primitive": true, "is_simple": true, "is_squarefree": true, "is_supersingular": false, "jacobian_count": 18, "label": "2.29.ag_h", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 12, "newton_coelevation": 2, "newton_elevation": 0, "number_fields": ["4.0.3600.3"], "p": 29, "p_rank": 2, "p_rank_deficit": 0, "poly": [1, -6, 7, -174, 841], "poly_str": "1 -6 7 -174 841 ", "primitive_models": [], "q": 29, "real_poly": [1, -6, -51], "simple_distinct": ["2.29.ag_h"], "simple_factors": ["2.29.ag_hA"], "simple_multiplicities": [1], "singular_primes": ["2,7*F+3*V-19", "7,6*F+15*V-91"], "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "4.0.3600.3", "splitting_polynomials": [[25, 0, -5, 0, 1]], "twist_count": 6, "twists": [["2.29.g_h", "2.841.aw_ant", 2], ["2.29.m_dq", "2.24389.axo_icrm", 3], ["2.29.am_dq", "2.594823321.afcsq_kjmruyo", 6], ["2.29.a_w", "2.594823321.afcsq_kjmruyo", 6], ["2.29.a_aw", "2.353814783205469041.afimeequ_oneayoovcjexy", 12]], "weak_equivalence_count": 4, "zfv_index": 28, "zfv_index_factorization": [[2, 2], [7, 1]], "zfv_is_bass": true, "zfv_is_maximal": false, "zfv_plus_index": 2, "zfv_plus_index_factorization": [[2, 1]], "zfv_plus_norm": 49, "zfv_singular_count": 4, "zfv_singular_primes": ["2,7*F+3*V-19", "7,6*F+15*V-91"]}