# Stored data for abelian variety isogeny class 2.29.a_cg, downloaded from the LMFDB on 17 November 2025. {"abvar_count": 900, "abvar_counts": [900, 810000, 594872100, 497871360000, 420707274322500, 353872815358410000, 297558232710299216100, 250245058424216002560000, 210457284365201134622256900, 176994610667867267834006250000], "abvar_counts_str": "900 810000 594872100 497871360000 420707274322500 353872815358410000 297558232710299216100 250245058424216002560000 210457284365201134622256900 176994610667867267834006250000 ", "angle_corank": 2, "angle_rank": 0, "angles": [0.5, 0.5], "center_dim": 2, "curve_count": 30, "curve_counts": [30, 958, 24390, 703918, 20511150, 594920878, 17249876310, 500243583838, 14507145975870, 420707315344798], "curve_counts_str": "30 958 24390 703918 20511150 594920878 17249876310 500243583838 14507145975870 420707315344798 ", "curves": ["y^2=x^5+28", "y^2=2*x^5+27", "y^2=19*x^5+3*x^4+8*x^3+16*x^2+6*x+27", "y^2=7*x^6+18*x^5+17*x^4+18*x^3+12*x^2+18*x+22", "y^2=14*x^6+7*x^5+5*x^4+7*x^3+24*x^2+7*x+15", "y^2=27*x^6+17*x^5+28*x^4+21*x^3+28*x^2+17*x+27", "y^2=25*x^6+5*x^5+27*x^4+13*x^3+27*x^2+5*x+25", "y^2=2*x^6+8*x^5+9*x^4+26*x^3+13*x^2+26*x+11", "y^2=4*x^6+16*x^5+18*x^4+23*x^3+26*x^2+23*x+22", "y^2=9*x^6+16*x^5+28*x^4+x^3+28*x^2+16*x+9", "y^2=18*x^6+3*x^5+27*x^4+2*x^3+27*x^2+3*x+18", "y^2=x^5+25*x", "y^2=x^6+25*x^5+8*x^4+19*x^3+13*x^2+16*x+1", "y^2=x^6+x^3+28", "y^2=2*x^6+2*x^3+27", "y^2=13*x^6+27*x^5+17*x^4+x^3+12*x^2+27*x+16", "y^2=26*x^6+25*x^5+5*x^4+2*x^3+24*x^2+25*x+3", "y^2=27*x^6+17*x^5+18*x^4+14*x^3+15*x^2+11*x+12", "y^2=25*x^6+5*x^5+7*x^4+28*x^3+x^2+22*x+24", "y^2=17*x^6+26*x^5+8*x^4+8*x^3+8*x^2+26*x+17", "y^2=5*x^6+23*x^5+16*x^4+16*x^3+16*x^2+23*x+5", "y^2=x^6+x^3+16", "y^2=2*x^6+2*x^3+3", "y^2=19*x^6+6*x^5+11*x^4+23*x^3+3*x^2+5*x+3", "y^2=9*x^6+12*x^5+22*x^4+17*x^3+6*x^2+10*x+6", "y^2=x^6+28", "y^2=2*x^6+27", "y^2=x^6+21", "y^2=x^6+17*x^5+24*x^4+20*x^3+5*x^2+17*x+28", "y^2=11*x^6+8*x^5+3*x^4+20*x^3+11*x^2+24*x+26", "y^2=22*x^6+16*x^5+6*x^4+11*x^3+22*x^2+19*x+23", "y^2=7*x^6+20*x^5+x^4+2*x^3+28*x^2+20*x+22", "y^2=14*x^6+11*x^5+2*x^4+4*x^3+27*x^2+11*x+15", "y^2=27*x^6+10*x^5+23*x^4+12*x^3+23*x^2+10*x+27", "y^2=25*x^6+20*x^5+17*x^4+24*x^3+17*x^2+20*x+25", "y^2=x^6+x^3+26"], "dim1_distinct": 1, "dim1_factors": 2, "dim2_distinct": 0, "dim2_factors": 0, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "g": 2, "galois_groups": ["2T1"], "geom_dim1_distinct": 1, "geom_dim1_factors": 2, "geom_dim2_distinct": 0, "geom_dim2_factors": 0, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 1, "geometric_extension_degree": 2, "geometric_galois_groups": ["1T1"], "geometric_number_fields": ["1.1.1.1"], "geometric_splitting_field": "1.1.1.1", "geometric_splitting_polynomials": [[0, 1]], "has_geom_ss_factor": true, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 36, "is_geometrically_simple": false, "is_geometrically_squarefree": false, "is_primitive": true, "is_simple": false, "is_squarefree": false, "is_supersingular": true, "jacobian_count": 36, "label": "2.29.a_cg", "max_divalg_dim": 1, "max_geom_divalg_dim": 4, "max_twist_degree": 12, "newton_coelevation": 0, "newton_elevation": 2, "number_fields": ["2.0.116.1"], "p": 29, "p_rank": 0, "p_rank_deficit": 2, "poly": [1, 0, 58, 0, 841], "poly_str": "1 0 58 0 841 ", "primitive_models": [], "q": 29, "real_poly": [1], "simple_distinct": ["1.29.a"], "simple_factors": ["1.29.aA", "1.29.aB"], "simple_multiplicities": [2], "slopes": ["1/2A", "1/2B", "1/2C", "1/2D"], "splitting_field": "2.0.116.1", "splitting_polynomials": [[29, 0, 1]], "twist_count": 5, "twists": [["2.29.a_abd", "2.24389.a_cuec", 3], ["2.29.a_acg", "2.707281.aezk_jhlqs", 4], ["2.29.a_a", "2.500246412961.agezcm_ojselnzuc", 8], ["2.29.a_bd", "2.353814783205469041.ahsgpsqe_wgkdhummygvwg", 12]]}