# Stored data for abelian variety isogeny class 2.23.g_bu, downloaded from the LMFDB on 08 September 2025. {"abvar_count": 720, "abvar_counts": [720, 311040, 145650960, 78282547200, 41418839091600, 21916025377908480, 11593233613191324240, 6132538545034936320000, 3244149945932753091059280, 1716156838816632667234195200], "abvar_counts_str": "720 311040 145650960 78282547200 41418839091600 21916025377908480 11593233613191324240 6132538545034936320000 3244149945932753091059280 1716156838816632667234195200 ", "angle_corank": 1, "angle_rank": 1, "angles": [0.5, 0.71512261722615], "center_dim": 4, "cohen_macaulay_max": 2, "curve_count": 30, "curve_counts": [30, 586, 11970, 279742, 6435150, 148045354, 3404942130, 78310067518, 1801152126270, 41426535533386], "curve_counts_str": "30 586 11970 279742 6435150 148045354 3404942130 78310067518 1801152126270 41426535533386 ", "curves": ["y^2=x^6+3*x^5+19*x^4+22*x^3+20*x^2+12*x+15", "y^2=22*x^6+22*x^5+15*x^4+7*x^3+19*x^2+18*x", "y^2=4*x^6+8*x^5+8*x^4+12*x^3+x^2+3*x+16", "y^2=12*x^6+17*x^5+9*x^4+15*x^3+9*x^2+17*x+12", "y^2=8*x^6+21*x^5+6*x^4+2*x^3+7*x^2+18*x", "y^2=19*x^6+3*x^5+8*x^4+2*x^3+17*x^2+19*x+4", "y^2=10*x^6+22*x^5+17*x^4+22*x^3+18*x^2+9*x+8", "y^2=17*x^6+20*x^5+3*x^4+21*x^3+21*x^2+21*x+18", "y^2=3*x^6+14*x^5+17*x^4+5*x^3+16*x^2+16*x+22", "y^2=10*x^6+19*x^5+5*x^4+4*x^3+21*x^2+17*x+20", "y^2=22*x^6+18*x^5+12*x^4+10*x^3+18*x^2+4*x+12", "y^2=6*x^6+12*x^5+12*x^4+15*x^3+12*x^2+15*x+2", "y^2=3*x^6+17*x^5+14*x^4+21*x^3+20*x^2+15*x+16", "y^2=16*x^6+8*x^5+10*x^4+10*x^3+7*x^2+4*x+7", "y^2=7*x^5+3*x^4+15*x^3+12*x^2+10*x+18", "y^2=21*x^6+12*x^5+14*x^4+19*x^3+21*x^2+16*x", "y^2=17*x^6+18*x^5+16*x^4+2*x^3+17*x^2+3*x+18", "y^2=22*x^6+14*x^5+14*x^4+10*x^3+3*x^2+x+13", "y^2=7*x^6+9*x^5+6*x^4+8*x^3+16*x^2+13", "y^2=3*x^6+18*x^5+6*x^4+5*x^3+9*x^2+4*x+1", "y^2=2*x^6+7*x^5+16*x^4+5*x^3+13*x^2+8*x+10", "y^2=12*x^6+4*x^5+14*x^4+7*x^3+17*x^2+13*x+6", "y^2=2*x^6+6*x^5+3*x^3+16*x^2+11*x+2", "y^2=x^6+7*x^5+x^3+7*x+1", "y^2=6*x^6+21*x^5+6*x^4+6*x^3+6*x^2+21*x+6", "y^2=19*x^6+11*x^5+7*x^4+2*x^3+18*x^2+16*x+19", "y^2=21*x^6+13*x^5+20*x^4+20*x^3+18*x^2+14*x+13", "y^2=15*x^6+7*x^5+22*x^4+13*x^3+11*x^2+2*x+9", "y^2=x^6+6*x^5+6*x^4+19*x^3+9*x^2+12*x+17", "y^2=8*x^6+12*x^5+3*x^4+9*x^3+2*x^2+13*x+16", "y^2=16*x^6+4*x^5+8*x^4+9*x^3+8*x^2+4*x+16", "y^2=7*x^6+x^5+13*x^4+21*x^3+21*x^2+3*x+15", "y^2=12*x^6+22*x^5+20*x^4+6*x^3+17*x^2+5*x+19", "y^2=8*x^6+3*x^5+12*x^4+10*x^3+11*x^2+8*x+12", "y^2=10*x^6+6*x^5+14*x^4+16*x^3+16*x^2+15*x+16", "y^2=4*x^6+3*x^5+12*x^4+5*x^3+3*x^2+16*x+13", "y^2=6*x^6+12*x^5+3*x^4+9*x^3+3*x^2+12*x+6", "y^2=6*x^6+7*x^5+5*x^4+6*x^3+19*x^2+12*x+20", "y^2=6*x^6+21*x^5+10*x^4+9*x^3+4*x^2+21*x", "y^2=17*x^6+14*x^5+18*x^4+20*x^3+6*x^2+22*x+18", "y^2=14*x^6+20*x^5+22*x^3+22*x+7", "y^2=4*x^6+7*x^5+19*x^4+21*x^3+19*x^2+7*x+4", "y^2=6*x^6+19*x^5+x^4+6*x^2+13*x+4", "y^2=3*x^6+15*x^5+16*x^4+x^3+16*x^2+20*x+14", "y^2=x^6+17*x^5+4*x^4+2*x^3+18*x+11", "y^2=8*x^6+x^5+21*x^4+22*x^3+10*x^2+10*x+2", "y^2=3*x^5+19*x^4+15*x^3+15*x^2+8*x+9", "y^2=13*x^6+4*x^5+9*x^4+15*x^3+17*x^2+15*x+18", "y^2=9*x^6+18*x^5+15*x^4+19*x^3+17*x^2+13*x+2", "y^2=5*x^6+x^5+19*x^4+7*x^3+19*x^2+x+5", "y^2=5*x^6+21*x^5+12*x^4+x^3+14*x^2+21*x+6", "y^2=19*x^5+22*x^4+x^3+5*x^2+15*x", "y^2=5*x^6+17*x^5+9*x^4+22*x^3+9*x^2+17*x+5", "y^2=16*x^6+18*x^5+8*x^4+3*x^3+18*x^2+13*x+8", "y^2=12*x^6+10*x^5+7*x^4+19*x^2+2*x+12", "y^2=18*x^6+14*x^5+8*x^4+21*x^3+x^2+9*x+4", "y^2=13*x^5+16*x^4+18*x^3+16*x^2+13*x", "y^2=8*x^6+11*x^5+15*x^4+9*x^3+15*x^2+11*x+8", "y^2=5*x^6+19*x^5+8*x^4+13*x^2+11*x+10", "y^2=18*x^6+12*x^5+9*x^4+5*x^3+9*x^2+12*x+18", "y^2=9*x^6+8*x^5+10*x^4+21*x^3+6*x^2+21*x+2", "y^2=9*x^6+12*x^5+6*x^4+5*x^3+15*x^2+16*x+13", "y^2=18*x^6+9*x^5+15*x^4+12*x^3+2*x^2+14*x+5", "y^2=16*x^6+8*x^5+6*x^4+4*x^3+8*x^2+4*x+3", "y^2=9*x^6+6*x^5+15*x^4+15*x^2+6*x+9", "y^2=2*x^6+12*x^4+7*x^3+16*x^2+9", "y^2=16*x^6+3*x^5+15*x^4+6*x^3+15*x^2+3*x+16", "y^2=12*x^6+18*x^5+20*x^4+8*x^3+7*x^2+10*x+2", "y^2=6*x^6+12*x^5+19*x^4+11*x^3+10*x^2+19*x+10", "y^2=22*x^6+7*x^5+10*x^4+3*x^3+14*x^2+9*x+12", "y^2=12*x^6+4*x^5+22*x^4+x^3+10*x^2+9*x+6", "y^2=3*x^6+19*x^5+x^4+10*x^3+x^2+19*x+3"], "dim1_distinct": 2, "dim1_factors": 2, "dim2_distinct": 0, "dim2_factors": 0, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "endomorphism_ring_count": 24, "g": 2, "galois_groups": ["2T1", "2T1"], "geom_dim1_distinct": 2, "geom_dim1_factors": 2, "geom_dim2_distinct": 0, "geom_dim2_factors": 0, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 3, "geometric_extension_degree": 2, "geometric_galois_groups": ["1T1", "2T1"], "geometric_number_fields": ["1.1.1.1", "2.0.56.1"], "geometric_splitting_field": "2.0.56.1", "geometric_splitting_polynomials": [[14, 0, 1]], "group_structure_count": 8, "has_geom_ss_factor": true, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 72, "is_geometrically_simple": false, "is_geometrically_squarefree": true, "is_primitive": true, "is_simple": false, "is_squarefree": true, "is_supersingular": false, "jacobian_count": 72, "label": "2.23.g_bu", "max_divalg_dim": 1, "max_geom_divalg_dim": 4, "max_twist_degree": 2, "newton_coelevation": 1, "newton_elevation": 1, "number_fields": ["2.0.23.1", "2.0.56.1"], "p": 23, "p_rank": 1, "p_rank_deficit": 1, "poly": [1, 6, 46, 138, 529], "poly_str": "1 6 46 138 529 ", "primitive_models": [], "q": 23, "real_poly": [1, 6], "simple_distinct": ["1.23.a", "1.23.g"], "simple_factors": ["1.23.aA", "1.23.gA"], "simple_multiplicities": [1, 1], "singular_primes": ["2,V+9", "3,2*F+5", "3,8*F-5"], "slopes": ["0A", "1/2A", "1/2B", "1A"], "splitting_field": "4.0.1658944.2", "splitting_polynomials": [[78, -40, 41, -2, 1]], "twist_count": 2, "twists": [["2.23.ag_bu", "2.529.ce_cgk", 2]], "weak_equivalence_count": 28, "zfv_index": 72, "zfv_index_factorization": [[2, 3], [3, 2]], "zfv_is_bass": false, "zfv_is_maximal": false, "zfv_plus_index": 1, "zfv_plus_index_factorization": [], "zfv_plus_norm": 5152, "zfv_singular_count": 6, "zfv_singular_primes": ["2,V+9", "3,2*F+5", "3,8*F-5"]}