# Stored data for abelian variety isogeny class 2.23.c_be, downloaded from the LMFDB on 21 November 2025. {"abvar_count": 608, "abvar_counts": [608, 311296, 147605984, 78426669056, 41404387764448, 21909659246313472, 11593412646075300704, 6132658028659645349888, 3244145628693354796520288, 1716155731210638488310562816], "abvar_counts_str": "608 311296 147605984 78426669056 41404387764448 21909659246313472 11593412646075300704 6132658028659645349888 3244145628693354796520288 1716155731210638488310562816 ", "angle_corank": 0, "angle_rank": 2, "angles": [0.394431612788636, 0.679357211061986], "center_dim": 4, "cohen_macaulay_max": 2, "curve_count": 26, "curve_counts": [26, 586, 12134, 280254, 6432906, 148002346, 3404994710, 78311593278, 1801149729338, 41426508796746], "curve_counts_str": "26 586 12134 280254 6432906 148002346 3404994710 78311593278 1801149729338 41426508796746 ", "curves": ["y^2=15*x^6+8*x^5+18*x^4+17*x^3+12*x^2+4*x+13", "y^2=18*x^6+2*x^5+6*x^4+8*x^3+22*x+16", "y^2=16*x^6+3*x^5+13*x^4+20*x^3+20*x^2+15*x+6", "y^2=13*x^6+3*x^5+13*x^4+15*x^3+22*x^2+16*x+16", "y^2=20*x^5+21*x^4+13*x^2+19*x+7", "y^2=6*x^6+2*x^5+x^4+5*x^3+14*x^2+10*x+20", "y^2=16*x^6+10*x^5+2*x^4+17*x^3+11*x^2+7*x", "y^2=8*x^6+5*x^4+2*x^3+9*x^2+14*x+19", "y^2=17*x^6+4*x^5+20*x^4+13*x^3+17*x^2+4*x+3", "y^2=21*x^6+12*x^5+13*x^4+17*x^3+2*x^2+3*x", "y^2=10*x^6+9*x^5+4*x^4+16*x^3+14*x^2+8*x+15", "y^2=13*x^6+6*x^5+18*x^3+11*x^2+10*x+4", "y^2=x^6+16*x^5+10*x^4+5*x^3+2*x^2+17*x+12", "y^2=5*x^6+13*x^5+x^4+14*x^3+20*x^2+19*x+8", "y^2=20*x^6+5*x^5+12*x^4+6*x^3+5*x^2+16*x+5", "y^2=15*x^6+19*x^5+5*x^4+14*x^3+2*x^2+5*x+1", "y^2=3*x^6+14*x^5+17*x^4+4*x^3+10*x^2+14*x+4", "y^2=10*x^5+16*x^4+2*x^3+13*x^2+12*x+2", "y^2=21*x^6+17*x^4+14*x^3+16*x^2+4*x+4", "y^2=19*x^6+22*x^5+10*x^4+19*x^3+20*x^2+10*x+8", "y^2=9*x^6+18*x^5+11*x^4+22*x^3+4*x^2+22*x+22", "y^2=19*x^6+6*x^5+7*x^4+4*x^3+10*x^2+4*x+11", "y^2=21*x^6+15*x^5+11*x^4+20*x^3+15*x+18", "y^2=15*x^6+18*x^5+19*x^4+22*x^3+18*x+20", "y^2=17*x^6+16*x^5+18*x^4+6*x^3+6*x^2+x+5", "y^2=7*x^6+12*x^5+11*x^4+5*x^3+22*x^2+21*x+13", "y^2=12*x^6+12*x^4+5*x^3+6*x^2+17*x+10", "y^2=21*x^6+7*x^5+5*x^4+3*x^3+x^2+9*x+6", "y^2=13*x^6+18*x^5+18*x^4+8*x^3+16*x^2+15*x+13", "y^2=10*x^6+3*x^5+4*x^4+14*x^3+11*x^2+14*x+4", "y^2=17*x^6+10*x^5+x^4+10*x^3+11*x^2+x+14", "y^2=9*x^6+20*x^5+13*x^4+6*x^3+21*x^2+3*x", "y^2=17*x^6+14*x^5+4*x^4+14*x^3+10*x^2+18*x+15", "y^2=16*x^6+14*x^5+9*x^4+11*x^3+9*x^2+21*x+14", "y^2=19*x^6+16*x^5+13*x^4+12*x^3+17*x^2+12*x+5", "y^2=19*x^6+9*x^5+15*x^4+20*x^3+16*x^2+13*x+18", "y^2=11*x^6+9*x^5+22*x^4+22*x^3+10*x^2+21*x+16", "y^2=14*x^6+13*x^5+19*x^4+21*x^3+21*x^2+13*x+7", "y^2=13*x^6+5*x^5+x^4+22*x^3+10*x^2+22*x", "y^2=2*x^6+12*x^5+2*x^4+17*x^3+11*x^2+5*x", "y^2=22*x^6+3*x^5+5*x^4+16*x^3+18*x^2+8*x+15", "y^2=19*x^6+2*x^5+9*x^4+8*x^3+9*x^2+17*x+16", "y^2=20*x^6+12*x^5+20*x^4+21*x^3+10*x^2+18*x+21", "y^2=21*x^6+12*x^5+x^4+10*x^3+21*x^2+18*x+2", "y^2=9*x^6+12*x^5+3*x^4+19*x^3+8*x^2+21*x", "y^2=4*x^6+7*x^5+18*x^4+12*x^3+13*x^2+17*x+8", "y^2=9*x^6+18*x^5+21*x^4+13*x^3+8*x^2+10*x+9", "y^2=19*x^6+17*x^5+12*x^3+19*x^2+15*x", "y^2=16*x^6+20*x^4+10*x^3+14*x^2+18*x+9", "y^2=10*x^6+17*x^5+3*x^4+18*x^3+8*x^2+11*x+6", "y^2=13*x^6+15*x^5+2*x^4+3*x^3+16*x^2+6*x+3", "y^2=13*x^6+2*x^5+2*x^4+9*x^3+19*x^2+9*x+19"], "dim1_distinct": 0, "dim1_factors": 0, "dim2_distinct": 1, "dim2_factors": 1, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "endomorphism_ring_count": 12, "g": 2, "galois_groups": ["4T3"], "geom_dim1_distinct": 0, "geom_dim1_factors": 0, "geom_dim2_distinct": 1, "geom_dim2_factors": 1, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 4, "geometric_extension_degree": 1, "geometric_galois_groups": ["4T3"], "geometric_number_fields": ["4.0.2312.1"], "geometric_splitting_field": "4.0.1088.2", "geometric_splitting_polynomials": [[2, -4, 5, -2, 1]], "group_structure_count": 4, "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 52, "is_geometrically_simple": true, "is_geometrically_squarefree": true, "is_primitive": true, "is_simple": true, "is_squarefree": true, "is_supersingular": false, "jacobian_count": 52, "label": "2.23.c_be", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 2, "newton_coelevation": 2, "newton_elevation": 0, "number_fields": ["4.0.2312.1"], "p": 23, "p_rank": 2, "p_rank_deficit": 0, "poly": [1, 2, 30, 46, 529], "poly_str": "1 2 30 46 529 ", "primitive_models": [], "q": 23, "real_poly": [1, 2, -16], "simple_distinct": ["2.23.c_be"], "simple_factors": ["2.23.c_beA"], "simple_multiplicities": [1], "singular_primes": ["2,2*F+3*V+5", "13,F^2+11*F+V+10"], "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "4.0.1088.2", "splitting_polynomials": [[2, -4, 5, -2, 1]], "twist_count": 2, "twists": [["2.23.ac_be", "2.529.ce_cqg", 2]], "weak_equivalence_count": 14, "zfv_index": 104, "zfv_index_factorization": [[2, 3], [13, 1]], "zfv_is_bass": false, "zfv_is_maximal": false, "zfv_plus_index": 2, "zfv_plus_index_factorization": [[2, 1]], "zfv_plus_norm": 5408, "zfv_singular_count": 4, "zfv_singular_primes": ["2,2*F+3*V+5", "13,F^2+11*F+V+10"]}