# Stored data for abelian variety isogeny class 2.17.ae_k, downloaded from the LMFDB on 19 October 2025. {"abvar_count": 228, "abvar_counts": [228, 84816, 23422212, 6996980736, 2021560714308, 582668652904272, 168389498634168228, 48663200900138876928, 14063068638765862063524, 4064227303709556685755216], "abvar_counts_str": "228 84816 23422212 6996980736 2021560714308 582668652904272 168389498634168228 48663200900138876928 14063068638765862063524 4064227303709556685755216 ", "angle_corank": 0, "angle_rank": 2, "angles": [0.154687513753303, 0.630695884824621], "center_dim": 4, "cohen_macaulay_max": 1, "curve_count": 14, "curve_counts": [14, 294, 4766, 83774, 1423774, 24139494, 410367118, 6976045438, 118587743150, 2015991865254], "curve_counts_str": "14 294 4766 83774 1423774 24139494 410367118 6976045438 118587743150 2015991865254 ", "curves": ["y^2=10*x^6+13*x^5+5*x^4+2*x^3+12*x+14", "y^2=12*x^6+7*x^5+13*x^4+10*x^3+11*x^2+11*x+7", "y^2=8*x^6+x^5+3*x^4+12*x^3+2*x^2+4*x+5", "y^2=9*x^6+11*x^5+7*x^4+10*x^3+14*x^2+8*x+11", "y^2=7*x^6+14*x^5+2*x^4+10*x^3+6*x^2+4*x+12", "y^2=5*x^6+8*x^5+16*x^4+10*x^3+3*x^2+6*x+15", "y^2=6*x^6+x^5+9*x^4+x^3+10*x^2+7*x+6", "y^2=14*x^6+x^5+2*x^4+10*x^3+12*x^2+11*x+6", "y^2=5*x^6+15*x^5+7*x^4+11*x^3+7*x+13", "y^2=3*x^6+7*x^5+10*x^4+16*x^3+2*x^2+7*x+9", "y^2=4*x^6+x^5+15*x^4+12*x^2+5*x+11", "y^2=11*x^6+5*x^3+8*x^2+13*x+10", "y^2=8*x^6+7*x^5+13*x^3+5*x^2+14*x+8", "y^2=7*x^6+13*x^5+9*x^4+6*x^3+x^2+2*x+10", "y^2=5*x^6+x^5+7*x^4+16*x^3+11*x^2+15*x+16", "y^2=10*x^6+12*x^5+15*x^4+7*x^3+12*x^2+15*x+2", "y^2=3*x^6+9*x^5+16*x^4+8*x^3+9*x^2+10*x+13", "y^2=9*x^6+12*x^5+14*x^4+4*x^3+5*x^2+5*x+5", "y^2=4*x^6+6*x^5+12*x^4+4*x^2+15*x+3", "y^2=3*x^6+8*x^5+5*x^3+8*x^2+15*x+14", "y^2=8*x^6+11*x^5+3*x^4+16*x^3+13*x^2+16*x+8", "y^2=8*x^6+9*x^5+3*x^4+15*x^2+12", "y^2=6*x^6+11*x^5+11*x^4+x^3+11*x^2+14*x+5", "y^2=7*x^6+16*x^5+7*x^4+11*x^3+12*x^2+12*x", "y^2=4*x^6+2*x^5+8*x^4+13*x^3+6*x^2+2", "y^2=9*x^6+10*x^5+10*x^4+13*x^3+9*x^2+9*x+15", "y^2=5*x^6+14*x^5+16*x^4+13*x^3+9*x^2+5*x+12", "y^2=4*x^6+15*x^5+11*x^4+6*x^3+12*x^2+2*x+7"], "dim1_distinct": 0, "dim1_factors": 0, "dim2_distinct": 1, "dim2_factors": 1, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "endomorphism_ring_count": 4, "g": 2, "galois_groups": ["4T3"], "geom_dim1_distinct": 0, "geom_dim1_factors": 0, "geom_dim2_distinct": 1, "geom_dim2_factors": 1, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 4, "geometric_extension_degree": 1, "geometric_galois_groups": ["4T3"], "geometric_number_fields": ["4.0.166208.4"], "geometric_splitting_field": "4.0.166208.4", "geometric_splitting_polynomials": [[53, 0, 18, 0, 1]], "group_structure_count": 2, "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 28, "is_geometrically_simple": true, "is_geometrically_squarefree": true, "is_primitive": true, "is_simple": true, "is_squarefree": true, "is_supersingular": false, "jacobian_count": 28, "label": "2.17.ae_k", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 2, "newton_coelevation": 2, "newton_elevation": 0, "number_fields": ["4.0.166208.4"], "p": 17, "p_rank": 2, "p_rank_deficit": 0, "poly": [1, -4, 10, -68, 289], "poly_str": "1 -4 10 -68 289 ", "primitive_models": [], "q": 17, "real_poly": [1, -4, -24], "simple_distinct": ["2.17.ae_k"], "simple_factors": ["2.17.ae_kA"], "simple_multiplicities": [1], "singular_primes": ["2,-2*F^2+V-9"], "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "4.0.166208.4", "splitting_polynomials": [[53, 0, 18, 0, 1]], "twist_count": 2, "twists": [["2.17.e_k", "2.289.e_fe", 2]], "weak_equivalence_count": 4, "zfv_index": 8, "zfv_index_factorization": [[2, 3]], "zfv_is_bass": true, "zfv_is_maximal": false, "zfv_plus_index": 2, "zfv_plus_index_factorization": [[2, 1]], "zfv_plus_norm": 848, "zfv_singular_count": 2, "zfv_singular_primes": ["2,-2*F^2+V-9"]}