# Stored data for abelian variety isogeny class 2.16.am_cn, downloaded from the LMFDB on 06 November 2025. {"abvar_count": 118, "abvar_counts": [118, 62068, 16921318, 4299077952, 1098243213958, 281339484788212, 72053442228006742, 18447134402076726528, 4722425255655707546902, 1208929617405536715170548], "abvar_counts_str": "118 62068 16921318 4299077952 1098243213958 281339484788212 72053442228006742 18447134402076726528 4722425255655707546902 1208929617405536715170548 ", "angle_corank": 0, "angle_rank": 2, "angles": [0.0826163580681317, 0.320878822415862], "center_dim": 4, "cohen_macaulay_max": 1, "curve_count": 5, "curve_counts": [5, 243, 4133, 65599, 1047365, 16769139, 268419989, 4295058175, 68720331989, 1099515081843], "curve_counts_str": "5 243 4133 65599 1047365 16769139 268419989 4295058175 68720331989 1099515081843 ", "curves": ["y^2+(x^2+x+a^3+a+1)*y=(a^3+1)*x^5+(a^3+a^2+a+1)*x^3+a^2*x+a^3+a^2+a+1", "y^2+(x^2+x+a^3+1)*y=(a^3+a^2+1)*x^5+(a^3+a)*x^3+(a+1)*x+a^3+a", "y^2+(x^2+x+a^3+a^2+1)*y=(a^3+a^2+a)*x^5+a^3*x^3+(a^2+1)*x+a^3", "y^2+(x^2+x+a^3+a^2+a)*y=(a^3+a+1)*x^5+(a^3+a^2)*x^3+a*x+a^3+a^2"], "dim1_distinct": 0, "dim1_factors": 0, "dim2_distinct": 1, "dim2_factors": 1, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "endomorphism_ring_count": 1, "g": 2, "galois_groups": ["4T3"], "geom_dim1_distinct": 0, "geom_dim1_factors": 0, "geom_dim2_distinct": 1, "geom_dim2_factors": 1, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 4, "geometric_extension_degree": 1, "geometric_galois_groups": ["4T3"], "geometric_number_fields": ["4.0.27792.2"], "geometric_splitting_field": "4.0.27792.2", "geometric_splitting_polynomials": [[22, -18, 11, 0, 1]], "group_structure_count": 1, "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 4, "is_geometrically_simple": true, "is_geometrically_squarefree": true, "is_primitive": true, "is_simple": true, "is_squarefree": true, "is_supersingular": false, "jacobian_count": 4, "label": "2.16.am_cn", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 2, "newton_coelevation": 2, "newton_elevation": 0, "number_fields": ["4.0.27792.2"], "p": 2, "p_rank": 2, "p_rank_deficit": 0, "poly": [1, -12, 65, -192, 256], "poly_str": "1 -12 65 -192 256 ", "primitive_models": [], "q": 16, "real_poly": [1, -12, 33], "simple_distinct": ["2.16.am_cn"], "simple_factors": ["2.16.am_cnA"], "simple_multiplicities": [1], "singular_primes": [], "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "4.0.27792.2", "splitting_polynomials": [[22, -18, 11, 0, 1]], "twist_count": 2, "twists": [["2.16.m_cn", "2.256.ao_ez", 2]], "weak_equivalence_count": 1, "zfv_index": 1, "zfv_index_factorization": [], "zfv_is_bass": true, "zfv_is_maximal": true, "zfv_plus_index": 1, "zfv_plus_index_factorization": [], "zfv_plus_norm": 193, "zfv_singular_count": 0, "zfv_singular_primes": []}