# Stored data for abelian variety isogeny class 2.149.abp_bbn, downloaded from the LMFDB on 02 November 2025. {"abvar_count": 16767, "abvar_counts": [16767, 487366389, 10944836795763, 242957892428325477, 5393457944198254528272, 119738982753695002337857269, 2658323160347882585796052285851, 59017430187288605698767104597555013, 1310245966384431514091578150147286562951, 29088770701336856196683000839007913887433984], "abvar_counts_str": "16767 487366389 10944836795763 242957892428325477 5393457944198254528272 119738982753695002337857269 2658323160347882585796052285851 59017430187288605698767104597555013 1310245966384431514091578150147286562951 29088770701336856196683000839007913887433984 ", "angle_corank": 0, "angle_rank": 2, "angles": [0.133324076277397, 0.222309508152832], "center_dim": 4, "curve_count": 109, "curve_counts": [109, 21951, 3308647, 492930779, 73440555734, 10942535236815, 1630436526216719, 242935032956872915, 36197319877324010581, 5393400662024628329286], "curve_counts_str": "109 21951 3308647 492930779 73440555734 10942535236815 1630436526216719 242935032956872915 36197319877324010581 5393400662024628329286 ", "curves": ["y^2=39*x^6+115*x^5+107*x^4+92*x^3+71*x^2+88*x+12", "y^2=112*x^6+52*x^5+17*x^4+137*x^3+141*x^2+55*x+26", "y^2=101*x^6+29*x^5+17*x^4+55*x^3+57*x^2+92*x+78", "y^2=143*x^6+113*x^5+63*x^4+80*x^3+103*x^2+137*x+68", "y^2=72*x^6+37*x^5+11*x^4+113*x^3+114*x^2+55*x+100", "y^2=17*x^6+118*x^5+52*x^4+82*x^3+80*x^2+145*x+100", "y^2=66*x^6+41*x^5+101*x^4+35*x^3+13*x^2+31*x+46", "y^2=8*x^6+28*x^5+54*x^4+41*x^3+103*x^2+62*x+10", "y^2=34*x^6+21*x^5+53*x^4+70*x^3+125*x^2+55*x+51", "y^2=20*x^6+46*x^5+63*x^4+71*x^3+115*x^2+92*x+92", "y^2=133*x^6+97*x^5+16*x^4+9*x^3+32*x^2+107*x+10", "y^2=135*x^6+47*x^5+84*x^4+121*x^3+115*x^2+70*x+56", "y^2=47*x^6+x^4+51*x^3+100*x^2+28*x+28", "y^2=13*x^6+135*x^5+7*x^4+70*x^3+122*x^2+38*x+75", "y^2=2*x^6+98*x^5+97*x^4+136*x^3+122*x^2+112*x+17", "y^2=51*x^6+78*x^5+58*x^4+61*x^3+41*x^2+66*x+65", "y^2=147*x^6+104*x^5+58*x^4+22*x^3+129*x^2+135*x+140", "y^2=11*x^6+132*x^5+85*x^4+120*x^3+7*x^2+66*x+131", "y^2=57*x^6+120*x^5+139*x^4+147*x^3+25*x^2+21*x+37", "y^2=31*x^6+5*x^5+107*x^4+114*x^3+48*x^2+36*x+110", "y^2=9*x^6+107*x^5+11*x^4+8*x^3+94*x^2+115*x+59", "y^2=2*x^6+45*x^5+143*x^4+119*x^3+32*x^2+36*x+23"], "dim1_distinct": 0, "dim1_factors": 0, "dim2_distinct": 1, "dim2_factors": 1, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "g": 2, "galois_groups": ["4T3"], "geom_dim1_distinct": 0, "geom_dim1_factors": 0, "geom_dim2_distinct": 1, "geom_dim2_factors": 1, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 4, "geometric_extension_degree": 1, "geometric_galois_groups": ["4T3"], "geometric_number_fields": ["4.0.4105517.1"], "geometric_splitting_field": "4.0.4105517.1", "geometric_splitting_polynomials": [[1611, -109, 85, -1, 1]], "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 22, "is_geometrically_simple": true, "is_geometrically_squarefree": true, "is_primitive": true, "is_simple": true, "is_squarefree": true, "is_supersingular": false, "jacobian_count": 22, "label": "2.149.abp_bbn", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 2, "newton_coelevation": 2, "newton_elevation": 0, "number_fields": ["4.0.4105517.1"], "p": 149, "p_rank": 2, "p_rank_deficit": 0, "poly": [1, -41, 715, -6109, 22201], "poly_str": "1 -41 715 -6109 22201 ", "primitive_models": [], "q": 149, "real_poly": [1, -41, 417], "simple_distinct": ["2.149.abp_bbn"], "simple_factors": ["2.149.abp_bbnA"], "simple_multiplicities": [1], "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "4.0.4105517.1", "splitting_polynomials": [[1611, -109, 85, -1, 1]], "twist_count": 2, "twists": [["2.149.bp_bbn", "2.22201.ajr_dcxl", 2]]}