# Stored data for abelian variety isogeny class 2.13.e_o, downloaded from the LMFDB on 05 September 2025. {"abvar_count": 240, "abvar_counts": [240, 30720, 4944240, 818380800, 136971049200, 23315295467520, 3937735051689840, 665446208805273600, 112455347956379028720, 19004772804678878361600], "abvar_counts_str": "240 30720 4944240 818380800 136971049200 23315295467520 3937735051689840 665446208805273600 112455347956379028720 19004772804678878361600 ", "all_polarized_product": false, "all_unpolarized_product": false, "angle_corank": 0, "angle_rank": 2, "angles": [0.410543812488967, 0.812832958189001], "center_dim": 4, "cohen_macaulay_max": 3, "curve_count": 18, "curve_counts": [18, 182, 2250, 28654, 368898, 4830374, 62754234, 815767006, 10604493810, 137857106582], "curve_counts_str": "18 182 2250 28654 368898 4830374 62754234 815767006 10604493810 137857106582 ", "curves": ["y^2=4*x^6+6*x^5+2*x^4+4*x^3+4*x^2+11*x+9", "y^2=3*x^6+9*x^5+6*x^4+8*x^3+6*x^2+4*x", "y^2=10*x^6+5*x^5+12*x^4+10*x^3+10*x^2+8*x+9", "y^2=x^5+3*x^4+3*x^2+x", "y^2=3*x^6+x^5+7*x^4+9*x^3+7*x^2+x+3", "y^2=x^6+6*x^5+9*x^4+8*x^3+5*x^2+12*x+9", "y^2=x^6+12*x^5+3*x^4+6*x^3+x^2+10*x+1", "y^2=3*x^6+12*x^5+12*x^4+10*x^3+12*x^2+12*x+3", "y^2=5*x^6+8*x^5+4*x^4+9*x^3+x^2+4*x+1", "y^2=3*x^6+9*x^5+6*x^4+4*x^3+5*x^2+3*x+3", "y^2=10*x^5+3*x^4+4*x^3+12*x^2+7*x+12", "y^2=4*x^6+10*x^5+3*x^4+9*x^3+11*x^2+12*x+4", "y^2=x^6+6*x^5+x^4+8*x^3+7*x^2+x+12", "y^2=4*x^6+12*x^5+5*x^4+7*x^3+2*x^2+4*x+4", "y^2=7*x^6+2*x^5+9*x^4+11*x^3+4*x^2+x+4", "y^2=12*x^6+6*x^5+4*x^3+3*x^2+x", "y^2=10*x^6+2*x^5+7*x^4+2*x^3+3*x+4", "y^2=x^6+4*x^5+4*x^4+2*x^3+4*x^2+11*x", "y^2=10*x^6+5*x^5+3*x^4+5*x^3+7*x^2+11*x+10", "y^2=10*x^6+8*x^5+10*x^4+x^3+5*x^2+12*x+9", "y^2=5*x^6+7*x^4+7*x^3+7*x^2+5", "y^2=7*x^6+9*x^5+8*x^4+12*x^3+7*x^2+8", "y^2=2*x^5+9*x^4+x^3+12*x^2+5*x", "y^2=11*x^5+9*x^4+10*x^3+7*x^2+6"], "dim1_distinct": 2, "dim1_factors": 2, "dim2_distinct": 0, "dim2_factors": 0, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "endomorphism_ring_count": 24, "g": 2, "galois_groups": ["2T1", "2T1"], "geom_dim1_distinct": 2, "geom_dim1_factors": 2, "geom_dim2_distinct": 0, "geom_dim2_factors": 0, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 4, "geometric_extension_degree": 1, "geometric_galois_groups": ["2T1", "2T1"], "geometric_number_fields": ["2.0.3.1", "2.0.4.1"], "geometric_splitting_field": "4.0.144.1", "geometric_splitting_polynomials": [[1, 0, -1, 0, 1]], "group_structure_count": 5, "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 24, "is_geometrically_simple": false, "is_geometrically_squarefree": true, "is_primitive": true, "is_simple": false, "is_squarefree": true, "is_supersingular": false, "jacobian_count": 24, "label": "2.13.e_o", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 12, "newton_coelevation": 2, "newton_elevation": 0, "number_fields": ["2.0.3.1", "2.0.4.1"], "p": 13, "p_rank": 2, "p_rank_deficit": 0, "pic_prime_gens": [[1, 3, 1, 4], [2, 5, 1, 8]], "poly": [1, 4, 14, 52, 169], "poly_str": "1 4 14 52 169 ", "primitive_models": [], "principal_polarization_count": 32, "q": 13, "real_poly": [1, 4, -12], "simple_distinct": ["1.13.ac", "1.13.g"], "simple_factors": ["1.13.acA", "1.13.gA"], "simple_multiplicities": [1, 1], "singular_primes": ["2,-F^2-V"], "size": 180, "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "4.0.144.1", "splitting_polynomials": [[1, 0, -1, 0, 1]], "twist_count": 24, "twists": [["2.13.ai_bm", "2.169.m_eo", 2], ["2.13.ae_o", "2.169.m_eo", 2], ["2.13.i_bm", "2.169.m_eo", 2], ["2.13.b_ae", "2.2197.ca_eqo", 3], ["2.13.n_cq", "2.2197.ca_eqo", 3], ["2.13.ag_bi", "2.28561.do_bhco", 4], ["2.13.ac_s", "2.28561.do_bhco", 4], ["2.13.c_s", "2.28561.do_bhco", 4], ["2.13.g_bi", "2.28561.do_bhco", 4], ["2.13.an_cq", "2.4826809.fhc_qqcao", 6], ["2.13.al_ce", "2.4826809.fhc_qqcao", 6], ["2.13.ab_aq", "2.4826809.fhc_qqcao", 6], ["2.13.ab_ae", "2.4826809.fhc_qqcao", 6], ["2.13.b_aq", "2.4826809.fhc_qqcao", 6], ["2.13.l_ce", "2.4826809.fhc_qqcao", 6], ["2.13.al_cc", "2.23298085122481.fllyy_adjxboqopfm", 12], ["2.13.aj_bu", "2.23298085122481.fllyy_adjxboqopfm", 12], ["2.13.ad_ac", "2.23298085122481.fllyy_adjxboqopfm", 12], ["2.13.ab_g", "2.23298085122481.fllyy_adjxboqopfm", 12], ["2.13.b_g", "2.23298085122481.fllyy_adjxboqopfm", 12], ["2.13.d_ac", "2.23298085122481.fllyy_adjxboqopfm", 12], ["2.13.j_bu", "2.23298085122481.fllyy_adjxboqopfm", 12], ["2.13.l_cc", "2.23298085122481.fllyy_adjxboqopfm", 12]], "weak_equivalence_count": 48, "zfv_index": 512, "zfv_index_factorization": [[2, 9]], "zfv_is_bass": false, "zfv_is_maximal": false, "zfv_pic_size": 32, "zfv_plus_index": 1, "zfv_plus_index_factorization": [], "zfv_plus_norm": 768, "zfv_singular_count": 2, "zfv_singular_primes": ["2,-F^2-V"]}