# Stored data for abelian variety isogeny class 2.113.az_mj, downloaded from the LMFDB on 09 October 2025. {"abvar_count": 10241, "abvar_counts": [10241, 163251781, 2081916331649, 26580263341397381, 339451847369149681936, 4334525811632384142999301, 55347536216808701260361812769, 706732560697363152100103287518725, 9024267964989924655073868995164647521, 115230877652042862669729076887147345412096], "abvar_counts_str": "10241 163251781 2081916331649 26580263341397381 339451847369149681936 4334525811632384142999301 55347536216808701260361812769 706732560697363152100103287518725 9024267964989924655073868995164647521 115230877652042862669729076887147345412096 ", "all_polarized_product": false, "all_unpolarized_product": false, "angle_corank": 0, "angle_rank": 2, "angles": [0.0947042427354963, 0.429448010260786], "center_dim": 4, "cohen_macaulay_max": 1, "curve_count": 89, "curve_counts": [89, 12787, 1442873, 163021731, 18424086294, 2081953054963, 235260593740793, 26584442230653123, 3004041937924897049, 339456739006389413022], "curve_counts_str": "89 12787 1442873 163021731 18424086294 2081953054963 235260593740793 26584442230653123 3004041937924897049 339456739006389413022 ", "curves": ["y^2=105*x^6+23*x^5+14*x^4+27*x^3+74*x^2+35*x+29", "y^2=15*x^6+100*x^5+56*x^4+20*x^3+74*x^2+95*x+25", "y^2=48*x^6+81*x^5+47*x^4+59*x^3+94*x^2+52*x+112", "y^2=51*x^6+64*x^5+23*x^4+10*x^3+98*x^2+52*x+107", "y^2=70*x^6+68*x^5+72*x^4+75*x^3+73*x^2+42*x+61", "y^2=105*x^6+84*x^5+95*x^4+102*x^3+2*x^2+84*x+51", "y^2=37*x^6+26*x^5+11*x^4+61*x^3+25*x^2+26*x+52", "y^2=43*x^6+79*x^5+24*x^4+61*x^3+112*x^2+12*x+40", "y^2=27*x^6+46*x^5+40*x^4+12*x^3+27*x^2+41*x+58", "y^2=70*x^6+13*x^5+66*x^4+108*x^3+7*x^2+62*x+34", "y^2=20*x^6+x^5+104*x^4+42*x^3+60*x^2+101*x+31", "y^2=33*x^6+x^5+3*x^4+99*x^3+60*x^2+56*x+58", "y^2=52*x^6+39*x^5+96*x^4+82*x^3+90*x^2+39*x+52", "y^2=64*x^6+74*x^5+30*x^4+105*x^3+74*x^2+94*x+89", "y^2=94*x^6+106*x^5+16*x^4+83*x^3+73*x^2+27*x+6", "y^2=94*x^6+54*x^5+8*x^4+109*x^3+68*x^2+68*x+6", "y^2=67*x^6+27*x^5+92*x^4+44*x^3+2*x^2+97*x+57", "y^2=90*x^6+97*x^5+87*x^4+61*x^3+72*x^2+110*x+12", "y^2=7*x^6+59*x^5+78*x^4+63*x^2+88*x+84", "y^2=37*x^6+64*x^5+17*x^4+6*x^3+85*x^2+56*x+53", "y^2=104*x^6+98*x^5+91*x^4+86*x^3+x^2+104*x+47", "y^2=20*x^6+63*x^5+14*x^4+11*x^3+37*x^2+11*x+17", "y^2=93*x^6+15*x^5+35*x^4+38*x^3+57*x^2+45*x+35", "y^2=5*x^5+60*x^4+74*x^3+62*x^2+52*x+103", "y^2=99*x^6+14*x^5+44*x^4+50*x^3+68*x^2+45*x+72", "y^2=26*x^6+15*x^5+99*x^4+45*x^3+37*x^2+93*x+18", "y^2=35*x^6+31*x^5+102*x^4+83*x^3+46*x^2+2*x+54", "y^2=8*x^6+30*x^5+52*x^4+70*x^3+14*x^2+21*x+102", "y^2=x^6+80*x^5+77*x^4+112*x^3+55*x^2+88*x+108", "y^2=14*x^6+81*x^5+101*x^4+59*x^3+53*x^2+17*x+25", "y^2=41*x^6+24*x^5+72*x^4+63*x^3+54*x^2+76*x+45", "y^2=16*x^6+84*x^5+83*x^4+98*x^3+4*x^2+77*x+18", "y^2=33*x^6+74*x^5+42*x^4+15*x^3+23*x^2+24*x+17", "y^2=103*x^6+24*x^5+51*x^4+75*x^3+8*x^2+83*x+73", "y^2=77*x^6+34*x^5+29*x^4+36*x^3+19*x^2+91*x+23", "y^2=82*x^6+74*x^5+112*x^4+30*x^3+70*x^2+54*x+66", "y^2=58*x^6+67*x^5+101*x^4+25*x^3+93*x^2+5*x+111", "y^2=47*x^6+51*x^5+62*x^4+27*x^3+71*x^2+48*x+73", "y^2=43*x^6+75*x^5+46*x^4+98*x^3+82*x^2+77*x+84", "y^2=41*x^6+28*x^5+2*x^4+45*x^3+15*x^2+96*x+104", "y^2=58*x^6+48*x^5+18*x^4+86*x^3+10*x^2+52*x+99", "y^2=6*x^6+37*x^5+16*x^4+12*x^3+44*x^2+43*x+79", "y^2=109*x^6+3*x^5+65*x^4+81*x^3+93*x^2+73*x+30", "y^2=5*x^6+52*x^5+10*x^4+94*x^3+67*x^2+52*x+19", "y^2=97*x^6+67*x^5+13*x^4+5*x^3+17*x^2+98*x+33", "y^2=60*x^6+92*x^5+34*x^4+42*x^3+94*x^2+25*x+24", "y^2=96*x^6+103*x^5+30*x^4+101*x^3+65*x^2+70*x+108", "y^2=51*x^6+82*x^5+70*x^4+110*x^3+60*x^2+39*x+73", "y^2=27*x^6+61*x^5+63*x^4+39*x^3+97*x^2+22*x+102", "y^2=102*x^6+90*x^5+27*x^4+90*x^3+60*x^2+50*x+82", "y^2=8*x^6+61*x^5+92*x^4+84*x^3+45*x^2+76*x+29", "y^2=11*x^6+34*x^5+65*x^4+66*x^3+8*x^2+43*x+7", "y^2=17*x^6+104*x^5+17*x^4+99*x^3+35*x^2+102*x+45", "y^2=90*x^6+92*x^5+14*x^4+94*x^3+49*x^2+87*x+26", "y^2=78*x^6+6*x^5+8*x^4+21*x^3+49*x^2+21*x+14", "y^2=100*x^6+34*x^5+4*x^4+78*x^3+97*x^2+112*x+100", "y^2=35*x^6+108*x^5+73*x^4+74*x^3+66*x^2+5*x+44", "y^2=110*x^6+37*x^5+31*x^4+27*x^3+x^2+93*x+47", "y^2=48*x^6+85*x^5+70*x^4+8*x^3+3*x^2+53*x+46", "y^2=2*x^6+111*x^5+109*x^4+94*x^3+x^2+43*x+100", "y^2=23*x^6+104*x^5+74*x^4+52*x^3+x^2+87*x+66", "y^2=35*x^6+108*x^5+25*x^4+90*x^3+55*x^2+10*x+55", "y^2=60*x^6+81*x^5+21*x^4+57*x^3+87*x^2+17*x+40", "y^2=79*x^6+83*x^5+75*x^4+109*x^3+99*x^2+72*x+23"], "dim1_distinct": 0, "dim1_factors": 0, "dim2_distinct": 1, "dim2_factors": 1, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "endomorphism_ring_count": 3, "g": 2, "galois_groups": ["4T3"], "geom_dim1_distinct": 0, "geom_dim1_factors": 0, "geom_dim2_distinct": 1, "geom_dim2_factors": 1, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 4, "geometric_extension_degree": 1, "geometric_galois_groups": ["4T3"], "geometric_number_fields": ["4.0.417725.1"], "geometric_splitting_field": "4.0.417725.1", "geometric_splitting_polynomials": [[1061, -67, 68, -2, 1]], "group_structure_count": 2, "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 64, "is_geometrically_simple": true, "is_geometrically_squarefree": true, "is_primitive": true, "is_simple": true, "is_squarefree": true, "is_supersingular": false, "jacobian_count": 64, "label": "2.113.az_mj", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 2, "newton_coelevation": 2, "newton_elevation": 0, "number_fields": ["4.0.417725.1"], "p": 113, "p_rank": 2, "p_rank_deficit": 0, "pic_prime_gens": [[1, 11, 1, 28], [1, 19, 1, 28]], "poly": [1, -25, 321, -2825, 12769], "poly_str": "1 -25 321 -2825 12769 ", "primitive_models": [], "principal_polarization_count": 64, "q": 113, "real_poly": [1, -25, 95], "simple_distinct": ["2.113.az_mj"], "simple_factors": ["2.113.az_mjA"], "simple_multiplicities": [1], "singular_primes": ["7,-3*F^2-F-V+19"], "size": 72, "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "4.0.417725.1", "splitting_polynomials": [[1061, -67, 68, -2, 1]], "twist_count": 2, "twists": [["2.113.z_mj", "2.12769.r_astj", 2]], "weak_equivalence_count": 3, "zfv_index": 49, "zfv_index_factorization": [[7, 2]], "zfv_is_bass": true, "zfv_is_maximal": false, "zfv_pic_size": 56, "zfv_plus_index": 7, "zfv_plus_index_factorization": [[7, 1]], "zfv_plus_norm": 16709, "zfv_singular_count": 2, "zfv_singular_primes": ["7,-3*F^2-F-V+19"]}