# Stored data for abelian variety isogeny class 2.113.av_iz, downloaded from the LMFDB on 13 October 2025. {"abvar_count": 10609, "abvar_counts": [10609, 163346773, 2079500060425, 26577871334953029, 339454481016393890704, 4334528224346371205013925, 55347526953741302307393037081, 706732546913813160760760445970629, 9024267969306495525397564546773833425, 115230877668633135721637532650106646908928], "abvar_counts_str": "10609 163346773 2079500060425 26577871334953029 339454481016393890704 4334528224346371205013925 55347526953741302307393037081 706732546913813160760760445970629 9024267969306495525397564546773833425 115230877668633135721637532650106646908928 ", "angle_corank": 0, "angle_rank": 2, "angles": [0.0757446595926098, 0.494927269660672], "center_dim": 4, "cohen_macaulay_max": 1, "curve_count": 93, "curve_counts": [93, 12795, 1441197, 163007059, 18424229238, 2081954213835, 235260554367141, 26584441712171299, 3004041939361818021, 339456739055262424350], "curve_counts_str": "93 12795 1441197 163007059 18424229238 2081954213835 235260554367141 26584441712171299 3004041939361818021 339456739055262424350 ", "curves": ["y^2=103*x^6+112*x^5+80*x^4+7*x^3+47*x^2+11*x+23", "y^2=36*x^6+9*x^5+37*x^4+104*x^3+80*x^2+41*x+101", "y^2=42*x^6+12*x^5+68*x^4+22*x^3+14*x^2+87*x+33", "y^2=79*x^6+78*x^5+71*x^4+13*x^3+81*x^2+12*x+101", "y^2=36*x^6+106*x^5+78*x^4+37*x^3+90*x^2+72*x+74", "y^2=24*x^6+24*x^5+91*x^4+107*x^3+9*x^2+49*x+90", "y^2=17*x^6+94*x^5+75*x^4+16*x^3+39*x^2+94*x+5", "y^2=8*x^6+77*x^5+101*x^4+51*x^3+20*x^2+95*x+35", "y^2=19*x^6+89*x^5+71*x^4+52*x^3+17*x^2+16*x+82", "y^2=18*x^6+52*x^5+31*x^4+45*x^3+108*x^2+28*x+89", "y^2=4*x^6+80*x^5+74*x^4+17*x^3+102*x^2+11*x+7", "y^2=53*x^6+110*x^5+24*x^4+15*x^3+80*x^2+30*x+46", "y^2=75*x^6+80*x^5+54*x^4+34*x^3+63*x^2+69*x+49", "y^2=85*x^6+18*x^5+27*x^4+44*x^3+52*x^2+75*x+86", "y^2=92*x^6+2*x^5+89*x^4+62*x^3+65*x^2+75*x+102", "y^2=7*x^6+74*x^5+91*x^4+33*x^3+6*x^2+100*x+62", "y^2=26*x^6+76*x^5+46*x^4+10*x^3+86*x^2+x+56", "y^2=60*x^6+24*x^5+92*x^4+29*x^3+8*x^2+14*x+57", "y^2=55*x^6+23*x^5+90*x^4+31*x^3+84*x^2+24*x+8", "y^2=68*x^6+21*x^5+98*x^4+105*x^3+30*x^2+83*x+87", "y^2=24*x^6+19*x^5+105*x^4+108*x^3+35*x^2+93*x+26", "y^2=18*x^6+94*x^5+16*x^4+55*x^3+101*x^2+46*x+12", "y^2=20*x^6+51*x^5+112*x^4+15*x^3+106*x^2+50*x+44", "y^2=77*x^6+101*x^5+95*x^4+24*x^3+74*x^2+109*x+100", "y^2=12*x^6+26*x^5+11*x^4+2*x^3+72*x^2+89*x+70", "y^2=106*x^6+109*x^5+3*x^4+74*x^3+90*x^2+47*x+46", "y^2=100*x^6+96*x^5+86*x^4+67*x^3+79*x^2+9*x+108", "y^2=59*x^6+55*x^5+103*x^4+20*x^3+92*x^2+37*x+74", "y^2=4*x^6+28*x^5+5*x^4+101*x^3+26*x^2+37*x+108", "y^2=110*x^6+48*x^5+48*x^4+22*x^3+59*x^2+6*x+24", "y^2=23*x^6+85*x^5+100*x^4+111*x^3+28*x^2+x+104", "y^2=62*x^6+14*x^5+49*x^4+28*x^3+84*x^2+111*x+17", "y^2=27*x^6+6*x^5+106*x^4+59*x^3+52*x^2+40*x+92", "y^2=104*x^6+108*x^5+36*x^4+92*x^3+49*x^2+5*x+41", "y^2=82*x^5+90*x^4+86*x^3+51*x^2+70*x+93", "y^2=76*x^6+19*x^5+59*x^4+105*x^3+107*x^2+6*x+48", "y^2=74*x^6+64*x^5+56*x^4+90*x^3+22*x^2+29*x+21", "y^2=93*x^6+112*x^5+101*x^4+108*x^3+59*x^2+26*x+36", "y^2=x^6+53*x^5+29*x^4+96*x^3+35*x^2+17*x+60", "y^2=46*x^6+61*x^5+3*x^4+74*x^3+98*x^2+79*x+23", "y^2=31*x^6+94*x^5+32*x^4+7*x^3+34*x+24", "y^2=8*x^6+109*x^5+63*x^4+19*x^3+51*x^2+36*x+100", "y^2=66*x^6+3*x^5+27*x^4+56*x^3+7*x^2+86*x+27", "y^2=7*x^6+47*x^5+71*x^4+94*x^3+49*x^2+69*x+15", "y^2=73*x^6+39*x^5+43*x^4+69*x^3+92*x^2+35*x+107", "y^2=84*x^6+21*x^5+82*x^4+6*x^3+74*x^2+75*x+23", "y^2=34*x^6+17*x^5+36*x^4+73*x^3+21*x^2+44*x+18", "y^2=76*x^6+90*x^5+88*x^4+96*x^3+26*x^2+109*x+4", "y^2=103*x^6+87*x^5+40*x^4+100*x^3+79*x^2+49*x+72", "y^2=77*x^6+37*x^5+69*x^4+24*x^3+5*x^2+42*x+39", "y^2=98*x^6+109*x^5+98*x^4+6*x^3+64*x^2+108*x+110", "y^2=8*x^6+25*x^5+38*x^4+19*x^3+5*x+96", "y^2=37*x^6+7*x^5+48*x^4+17*x^3+107*x^2+21*x+58", "y^2=73*x^6+23*x^5+42*x^4+47*x^3+28*x^2+112*x+95", "y^2=7*x^6+108*x^5+109*x^4+74*x^3+25*x^2+50*x+19", "y^2=34*x^6+53*x^5+65*x^4+89*x^3+4*x^2+63*x+95", "y^2=37*x^6+23*x^5+100*x^4+22*x^3+33*x^2+x+111", "y^2=73*x^6+29*x^5+105*x^4+104*x^3+103*x^2+10*x+92", "y^2=23*x^6+15*x^5+85*x^4+65*x^3+19*x^2+22*x+93", "y^2=83*x^6+103*x^5+35*x^4+109*x^3+26*x^2+26*x+106", "y^2=42*x^6+28*x^5+58*x^4+106*x^3+9*x^2+63*x+101", "y^2=5*x^6+44*x^5+37*x^4+40*x^3+101*x^2+103*x+56", "y^2=59*x^6+33*x^5+88*x^4+21*x^3+48*x^2+110*x+3", "y^2=63*x^6+82*x^5+102*x^4+97*x^3+15*x^2+111*x+20", "y^2=83*x^6+88*x^5+4*x^4+111*x^3+31*x^2+52*x+54", "y^2=74*x^6+50*x^5+75*x^4+5*x^3+27*x^2+28*x+99", "y^2=75*x^6+3*x^5+72*x^4+19*x^3+9*x^2+20*x+42", "y^2=26*x^6+46*x^5+33*x^4+98*x^3+75*x^2+107*x+7", "y^2=30*x^6+59*x^5+40*x^4+34*x^3+42*x^2+93*x+84", "y^2=5*x^6+81*x^5+84*x^4+86*x^3+68*x^2+55*x+101", "y^2=44*x^6+110*x^5+11*x^4+79*x^3+110*x^2+2*x+46", "y^2=44*x^6+112*x^5+79*x^4+87*x^3+49*x^2+111*x+25", "y^2=12*x^6+106*x^5+99*x^4+71*x^3+32*x^2+42*x+66", "y^2=91*x^6+36*x^5+72*x^4+18*x^3+99*x^2+55*x+50", "y^2=112*x^6+31*x^5+89*x^4+46*x^3+108*x^2+58*x+10", "y^2=106*x^6+32*x^5+55*x^4+9*x^3+64*x^2+38*x+92", "y^2=28*x^6+99*x^5+17*x^4+60*x^3+58*x^2+77*x+59", "y^2=53*x^6+71*x^5+109*x^4+98*x^3+28*x^2+18*x+71", "y^2=85*x^6+47*x^5+80*x^4+106*x^3+70*x^2+65*x+32", "y^2=88*x^6+52*x^5+74*x^4+66*x^3+62*x^2+61*x+39", "y^2=27*x^6+99*x^5+66*x^4+35*x^3+102*x^2+x+108", "y^2=9*x^6+57*x^5+105*x^4+63*x^3+46*x^2+17*x+30", "y^2=58*x^6+44*x^5+22*x^4+51*x^3+20*x^2+55*x+62", "y^2=89*x^6+21*x^5+30*x^4+26*x^3+20*x^2+13*x+94", "y^2=27*x^6+44*x^5+74*x^4+112*x^3+92*x^2+3*x+37", "y^2=34*x^6+78*x^5+20*x^4+52*x^3+7*x^2+31*x+59", "y^2=95*x^6+35*x^5+38*x^4+61*x^3+93*x^2+71*x+107", "y^2=108*x^6+72*x^5+110*x^4+84*x^3+108*x^2+15*x+83", "y^2=11*x^6+2*x^5+65*x^4+46*x^3+33*x^2+107*x+70", "y^2=90*x^6+17*x^5+100*x^4+8*x^3+83*x^2+26*x+47", "y^2=39*x^6+9*x^5+20*x^4+19*x^3+26*x^2+94*x+58", "y^2=85*x^6+22*x^5+20*x^4+41*x^3+91*x^2+45*x+9", "y^2=26*x^6+x^5+94*x^4+96*x^3+56*x^2+74*x+12", "y^2=18*x^6+14*x^5+57*x^4+89*x^3+103*x^2+83*x+35", "y^2=38*x^6+103*x^5+40*x^4+41*x^3+64*x^2+49*x+82", "y^2=9*x^6+13*x^5+83*x^4+103*x^3+101*x^2+81*x+89"], "dim1_distinct": 0, "dim1_factors": 0, "dim2_distinct": 1, "dim2_factors": 1, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "endomorphism_ring_count": 1, "g": 2, "galois_groups": ["4T3"], "geom_dim1_distinct": 0, "geom_dim1_factors": 0, "geom_dim2_distinct": 1, "geom_dim2_factors": 1, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 4, "geometric_extension_degree": 1, "geometric_galois_groups": ["4T3"], "geometric_number_fields": ["4.0.1935787581.1"], "geometric_splitting_field": "4.0.1935787581.1", "geometric_splitting_polynomials": [[4729, -1118, 68, -1, 1]], "group_structure_count": 1, "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 96, "is_geometrically_simple": true, "is_geometrically_squarefree": true, "is_primitive": true, "is_simple": true, "is_squarefree": true, "is_supersingular": false, "jacobian_count": 96, "label": "2.113.av_iz", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 2, "newton_coelevation": 2, "newton_elevation": 0, "number_fields": ["4.0.1935787581.1"], "p": 113, "p_rank": 2, "p_rank_deficit": 0, "poly": [1, -21, 233, -2373, 12769], "poly_str": "1 -21 233 -2373 12769 ", "primitive_models": [], "q": 113, "real_poly": [1, -21, 7], "simple_distinct": ["2.113.av_iz"], "simple_factors": ["2.113.av_izA"], "simple_multiplicities": [1], "singular_primes": [], "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "4.0.1935787581.1", "splitting_polynomials": [[4729, -1118, 68, -1, 1]], "twist_count": 2, "twists": [["2.113.v_iz", "2.12769.z_abdjb", 2]], "weak_equivalence_count": 1, "zfv_index": 1, "zfv_index_factorization": [], "zfv_is_bass": true, "zfv_is_maximal": true, "zfv_plus_index": 1, "zfv_plus_index_factorization": [], "zfv_plus_norm": 11349, "zfv_singular_count": 0, "zfv_singular_primes": []}