# Stored data for abelian variety isogeny class 1.97.ac, downloaded from the LMFDB on 08 November 2025. {"abvar_count": 96, "abvar_counts": [96, 9600, 913248, 88512000, 8587250016, 832973500800, 80798296223328, 7837433472768000, 760231057272061536, 73742412698523888000], "abvar_counts_str": "96 9600 913248 88512000 8587250016 832973500800 80798296223328 7837433472768000 760231057272061536 73742412698523888000 ", "all_polarized_product": false, "all_unpolarized_product": false, "angle_corank": 0, "angle_rank": 1, "angles": [0.467624736821162], "center_dim": 2, "cohen_macaulay_max": 1, "curve_count": 96, "curve_counts": [96, 9600, 913248, 88512000, 8587250016, 832973500800, 80798296223328, 7837433472768000, 760231057272061536, 73742412698523888000], "curve_counts_str": "96 9600 913248 88512000 8587250016 832973500800 80798296223328 7837433472768000 760231057272061536 73742412698523888000 ", "curves": ["y^2=x^3+33*x+68", "y^2=x^3+69*x+54", "y^2=x^3+36*x+36", "y^2=x^3+14*x+70", "y^2=x^3+3*x+3", "y^2=x^3+25*x+25", "y^2=x^3+56*x+56", "y^2=x^3+40*x+40", "y^2=x^3+35*x+78", "y^2=x^3+71*x+64", "y^2=x^3+18*x+18", "y^2=x^3+73*x+74", "y^2=x^3+48*x+48", "y^2=x^3+2*x+10"], "dim1_distinct": 1, "dim1_factors": 1, "dim2_distinct": 0, "dim2_factors": 0, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "endomorphism_ring_count": 3, "g": 1, "galois_groups": ["2T1"], "geom_dim1_distinct": 1, "geom_dim1_factors": 1, "geom_dim2_distinct": 0, "geom_dim2_factors": 0, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 2, "geometric_extension_degree": 1, "geometric_galois_groups": ["2T1"], "geometric_number_fields": ["2.0.24.1"], "geometric_splitting_field": "2.0.24.1", "geometric_splitting_polynomials": [[6, 0, 1]], "group_structure_count": 3, "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 0, "is_geometrically_simple": true, "is_geometrically_squarefree": true, "is_primitive": true, "is_simple": true, "is_squarefree": true, "is_supersingular": false, "jacobian_count": 14, "label": "1.97.ac", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 2, "newton_coelevation": 1, "newton_elevation": 0, "number_fields": ["2.0.24.1"], "p": 97, "p_rank": 1, "p_rank_deficit": 0, "poly": [1, -2, 97], "poly_str": "1 -2 97 ", "primitive_models": [], "principal_polarization_count": 14, "q": 97, "real_poly": [1, -2], "simple_distinct": ["1.97.ac"], "simple_factors": ["1.97.acA"], "simple_multiplicities": [1], "singular_primes": ["2,F+1"], "size": 14, "slopes": ["0A", "1A"], "splitting_field": "2.0.24.1", "splitting_polynomials": [[6, 0, 1]], "twist_count": 2, "twists": [["1.97.c", "1.9409.hi", 2]], "weak_equivalence_count": 3, "zfv_index": 4, "zfv_index_factorization": [[2, 2]], "zfv_is_bass": true, "zfv_is_maximal": false, "zfv_plus_index": 1, "zfv_plus_index_factorization": [], "zfv_plus_norm": 384, "zfv_singular_count": 2, "zfv_singular_primes": ["2,F+1"]}