-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 1120, 'abvar_counts': [1120, 1935360, 2560536160, 3512291328000, 4810581264949600, 6583323317586462720, 9012034310312001267040, 12337506893331977011200000, 16890054763753555814121808480, 23122482962716942998093324748800], 'abvar_counts_str': '1120 1935360 2560536160 3512291328000 4810581264949600 6583323317586462720 9012034310312001267040 12337506893331977011200000 16890054763753555814121808480 23122482962716942998093324748800 ', 'angle_corank': 0, 'angle_rank': 2, 'angles': [0.19286113307749, 0.552568456711253], 'center_dim': 4, 'cohen_macaulay_max': 3, 'curve_count': 30, 'curve_counts': [30, 1414, 50550, 1874062, 69372750, 2565871126, 94931592870, 3512478024478, 129961747129470, 4808584226024614], 'curve_counts_str': '30 1414 50550 1874062 69372750 2565871126 94931592870 3512478024478 129961747129470 4808584226024614 ', 'curves': ['y^2=35*x^6+31*x^5+31*x^4+3*x^3+2*x^2+26*x', 'y^2=8*x^6+16*x^5+10*x^4+7*x^3+13*x^2+19*x+15', 'y^2=25*x^6+33*x^5+23*x^4+21*x^3+23*x^2+33*x+25', 'y^2=10*x^6+8*x^5+30*x^4+3*x^3+30*x^2+8*x+10', 'y^2=2*x^6+35*x^5+13*x^4+32*x^3+13*x+8', 'y^2=24*x^6+21*x^5+10*x^4+11*x^3+34*x^2+34*x+5', 'y^2=16*x^6+30*x^5+17*x^4+2*x^3+17*x^2+30*x+16', 'y^2=3*x^6+4*x^5+13*x^4+24*x^3+29*x^2+9*x+27', 'y^2=33*x^6+4*x^5+29*x^4+8*x^3+23*x^2+26*x+20', 'y^2=21*x^5+16*x^4+2*x^3+16*x^2+21*x', 'y^2=13*x^6+35*x^4+24*x^3+x^2+21*x', 'y^2=20*x^6+29*x^5+2*x^4+2*x^3+16*x^2+9*x+25', 'y^2=25*x^5+6*x^4+17*x^3+21*x^2+32*x+6', 'y^2=18*x^6+5*x^5+5*x^4+7*x^2+15*x+32', 'y^2=x^6+21*x^5+28*x^4+10*x^3+30*x^2+4*x+1', 'y^2=23*x^6+5*x^5+13*x^4+14*x^3+33*x^2+5*x+13', 'y^2=16*x^6+26*x^5+34*x^4+30*x^3+35*x^2+7*x+14', 'y^2=23*x^6+6*x^5+13*x^4+34*x^3+6*x^2+23*x+3', 'y^2=13*x^6+36*x^5+12*x^4+9*x^3+32*x^2+34*x+2', 'y^2=23*x^6+30*x^5+18*x^4+15*x^3+8*x^2+18*x+32', 'y^2=25*x^6+34*x^5+27*x^4+11*x^3+24*x^2+23*x', 'y^2=14*x^6+26*x^5+19*x^4+32*x^3+25*x^2+22*x+22', 'y^2=14*x^6+4*x^5+34*x^4+34*x^3+20*x^2+3*x+2', 'y^2=14*x^6+11*x^5+32*x^4+31*x^3+31*x^2+29*x+11', 'y^2=x^6+17*x^5+35*x^4+30*x^3+26*x^2+7*x+17', 'y^2=2*x^6+17*x^5+4*x^4+35*x^3+30*x^2+22*x+2', 'y^2=35*x^6+3*x^5+28*x^4+30*x^3+28*x^2+11*x+10', 'y^2=29*x^6+23*x^5+30*x^4+16*x^3+19*x^2+19*x+18', 'y^2=26*x^5+20*x^4+5*x^3+32*x^2+33*x+13', 'y^2=18*x^6+3*x^5+10*x^4+15*x^3+10*x^2+3*x+18', 'y^2=31*x^6+14*x^4+20*x^3+9*x^2+35*x+16', 'y^2=25*x^6+18*x^5+10*x^4+21*x^3+34*x^2+26*x+13', 'y^2=36*x^6+18*x^5+19*x^3+16*x^2+16*x+19', 'y^2=26*x^6+34*x^5+14*x^4+33*x^3+6*x^2+25*x+31', 'y^2=31*x^6+3*x^5+7*x^4+19*x^3+24*x^2+x+15', 'y^2=12*x^5+13*x^4+24*x^3+30*x^2+23*x+36', 'y^2=26*x^6+x^4+x^2+29*x+15', 'y^2=3*x^6+32*x^4+11*x^3+32*x^2+3', 'y^2=x^6+10*x^5+28*x^4+35*x^3+36*x^2+6*x+4', 'y^2=18*x^6+16*x^5+17*x^4+18*x^3+20*x^2+11*x+26', 'y^2=6*x^6+31*x^5+23*x^4+31*x^3+28*x^2+31*x+28', 'y^2=3*x^6+30*x^5+16*x^3+30*x+3', 'y^2=5*x^6+32*x^5+31*x^4+22*x^3+29*x^2+24*x+5', 'y^2=27*x^6+19*x^5+27*x^4+35*x^3+27*x^2+19*x+27', 'y^2=19*x^5+2*x^4+8*x^3+5*x^2+23*x+21', 'y^2=32*x^6+32*x^5+2*x^4+30*x^3+31*x^2+29*x+24', 'y^2=34*x^6+4*x^5+33*x^4+11*x^3+6*x^2+16*x+24', 'y^2=36*x^6+14*x^5+30*x^4+30*x^3+6*x^2+30*x', 'y^2=35*x^6+25*x^5+4*x^4+2*x^3+4*x^2+25*x+35', 'y^2=2*x^6+6*x^5+14*x^4+16*x^3+14*x^2+6*x+2', 'y^2=24*x^6+36*x^5+8*x^4+35*x^3+33*x^2+9*x+11', 'y^2=x^6+5*x^5+9*x^4+12*x^3+14*x^2+29*x+24', 'y^2=15*x^6+31*x^5+9*x^4+35*x^3+12*x^2+20*x+32', 'y^2=28*x^6+15*x^5+17*x^4+18*x^3+10*x^2+22*x+22', 'y^2=26*x^6+25*x^5+4*x^4+4*x^3+33*x^2+12*x+20', 'y^2=31*x^6+21*x^5+23*x^4+30*x^3+23*x^2+21*x+31', 'y^2=20*x^6+26*x^5+7*x^4+25*x^3+2*x^2+19*x+14', 'y^2=6*x^6+13*x^5+23*x^4+17*x^3+2*x^2+36*x+2', 'y^2=13*x^6+12*x^5+29*x^4+4*x^3+23*x^2+13*x+14', 'y^2=25*x^6+5*x^5+6*x^4+20*x^3+4*x^2+7*x+36', 'y^2=20*x^6+15*x^5+5*x^4+19*x^2+19*x+22', 'y^2=19*x^6+24*x^5+3*x^4+14*x^3+21*x^2+11*x+11', 'y^2=7*x^6+32*x^5+16*x^4+13*x^3+30*x^2+13*x+20', 'y^2=30*x^6+34*x^5+21*x^4+23*x^3+11*x^2+22*x+15', 'y^2=29*x^6+5*x^5+29*x^4+15*x^3+12*x^2+30*x+11', 'y^2=19*x^6+10*x^5+36*x^4+31*x^3+26*x^2+26*x', 'y^2=31*x^6+14*x^5+6*x^4+36*x^3+5*x^2+18*x+2', 'y^2=25*x^6+22*x^5+32*x^4+23*x^3+24*x^2+15*x+13', 'y^2=36*x^6+4*x^5+15*x^4+6*x^3+27*x^2+36*x+4', 'y^2=2*x^6+25*x^5+2*x^4+2*x^3+22*x^2+28*x+14', 'y^2=17*x^6+23*x^5+12*x^4+27*x^3+16*x^2+17*x+27', 'y^2=5*x^6+31*x^5+9*x^4+11*x^3+9*x^2+31*x+5', 'y^2=14*x^6+28*x^5+15*x^4+30*x^3+10*x^2+28*x+31', 'y^2=15*x^6+x^5+13*x^4+16*x^3+35*x^2+9*x+2', 'y^2=20*x^6+2*x^5+28*x^4+x^3+x^2+6*x+17', 'y^2=35*x^5+13*x^4+14*x^3+5*x^2+17*x', 'y^2=15*x^6+12*x^5+32*x^4+14*x^3+32*x^2+13*x+20', 'y^2=13*x^6+34*x^5+11*x^4+27*x^3+11*x^2+34*x+13', 'y^2=24*x^6+7*x^5+10*x^4+x^3+28*x^2+33', 'y^2=10*x^6+10*x^5+14*x^4+23*x^3+3*x^2+32*x+15', 'y^2=19*x^6+6*x^5+24*x^4+26*x^3+19*x^2+8*x+18', 'y^2=35*x^6+6*x^5+18*x^4+8*x^3+18*x^2+6*x+35', 'y^2=25*x^5+19*x^4+24*x^3+33*x^2+17*x+23', 'y^2=26*x^6+9*x^5+21*x^4+3*x^3+24*x^2+7*x+2', 'y^2=25*x^5+8*x^4+7*x^3+16*x^2+3*x+6', 'y^2=12*x^6+16*x^5+5*x^4+11*x^3+22*x^2+20*x+2', 'y^2=14*x^6+9*x^5+19*x^4+6*x^3+19*x^2+9*x+14', 'y^2=25*x^5+29*x^4+25*x^3+27*x^2+33*x+31', 'y^2=2*x^6+8*x^5+27*x^4+3*x^3+10*x^2+x+28', 'y^2=10*x^6+24*x^5+2*x^4+18*x^3+2*x^2+24*x+10', 'y^2=12*x^6+16*x^5+10*x^4+12*x^2+26*x+16', 'y^2=12*x^6+28*x^5+32*x^4+31*x^3+24*x^2+32*x+7', 'y^2=24*x^6+16*x^5+17*x^4+3*x^3+6*x^2+34*x+4', 'y^2=14*x^6+5*x^5+6*x^4+19*x^3+6*x^2+5*x+14', 'y^2=7*x^6+12*x^5+10*x^4+33*x^3+30*x^2+20*x+2', 'y^2=36*x^6+16*x^5+5*x^4+25*x^3+11*x^2+35*x+17', 'y^2=27*x^6+20*x^5+22*x^4+14*x^3+17*x^2+17*x+30', 'y^2=24*x^6+6*x^5+14*x^4+6*x^3+11*x^2+35*x+19', 'y^2=15*x^6+18*x^5+5*x^4+12*x^3+12*x^2+27*x', 'y^2=23*x^6+4*x^5+26*x^4+10*x^3+5*x^2+7*x+24', 'y^2=22*x^5+18*x^4+6*x^2+23*x', 'y^2=23*x^6+22*x^5+12*x^4+15*x^3+13*x^2+32*x+15', 'y^2=11*x^6+17*x^5+35*x^4+25*x^3+34*x^2+19*x+25', 'y^2=19*x^6+18*x^5+15*x^4+18*x^3+15*x^2+18*x+19', 'y^2=14*x^6+17*x^5+27*x^4+x^3+34*x^2+32*x+34', 'y^2=5*x^6+x^5+28*x^4+34*x^3+30*x^2+2*x+30', 'y^2=13*x^6+15*x^5+30*x^4+21*x^3+3*x^2+10*x+35', 'y^2=20*x^6+27*x^5+28*x^4+33*x^3+28*x^2+27*x+20', 'y^2=5*x^6+35*x^5+34*x^4+27*x^3+30*x^2+10*x+29', 'y^2=29*x^6+14*x^4+22*x^3+29*x^2+23*x+18', 'y^2=11*x^6+10*x^5+24*x^4+27*x^2+9*x+36', 'y^2=16*x^6+11*x^5+32*x^4+29*x^3+32*x^2+11*x+16', 'y^2=22*x^6+13*x^5+14*x^4+23*x^3+33*x^2+30*x', 'y^2=4*x^6+30*x^5+18*x^4+11*x^3+4*x^2+19*x+3', 'y^2=20*x^6+32*x^5+12*x^4+11*x^3+3*x^2+15*x+19', 'y^2=32*x^6+12*x^5+10*x^4+8*x^3+8*x^2+x+18', 'y^2=32*x^6+21*x^5+6*x^4+7*x^3+22*x^2+19*x+36', 'y^2=10*x^6+22*x^5+11*x^4+5*x^3+10*x^2+26*x+13', 'y^2=23*x^6+3*x^5+33*x^4+8*x^3+30*x^2+23*x+22', 'y^2=17*x^6+27*x^5+2*x^4+36*x^3+25*x^2+14*x+14', 'y^2=27*x^6+4*x^5+32*x^4+25*x^3+28*x^2+36*x+33', 'y^2=32*x^6+13*x^5+19*x^4+18*x^3+24*x^2+19*x+25', 'y^2=6*x^6+25*x^5+33*x^3+23*x^2+3*x+19', 'y^2=35*x^6+15*x^5+x^4+7*x^3+2*x^2+35*x+30', 'y^2=x^6+16*x^5+6*x^4+3*x^3+2*x^2+x+6', 'y^2=8*x^6+32*x^5+6*x^4+30*x^3+6*x^2+32*x+8', 'y^2=26*x^6+19*x^5+32*x^4+7*x^3+10*x^2+16*x+33', 'y^2=3*x^6+33*x^5+10*x^4+14*x^3+10*x^2+8*x+17', 'y^2=7*x^6+10*x^5+14*x^4+10*x^3+14*x^2+10*x+7', 'y^2=36*x^6+34*x^5+30*x^3+29*x^2+8*x+6', 'y^2=x^6+22*x^5+20*x^4+11*x^3+21*x^2+9*x+25', 'y^2=28*x^6+19*x^5+10*x^4+20*x^3+10*x^2+14*x+24', 'y^2=24*x^6+19*x^5+16*x^4+6*x^3+16*x^2+19*x+24', 'y^2=22*x^6+9*x^5+15*x^4+13*x^3+35*x^2+19*x+21', 'y^2=34*x^6+22*x^5+19*x^4+31*x^3+23*x^2+12*x+32', 'y^2=34*x^6+36*x^5+16*x^4+15*x^3+31*x^2+28*x+25', 'y^2=2*x^6+8*x^5+x^4+12*x^3+23*x^2+16*x+6', 'y^2=26*x^6+27*x^5+23*x^4+4*x^3+22*x', 'y^2=29*x^6+12*x^5+5*x^4+19*x^3+30*x^2+9*x+2', 'y^2=21*x^6+3*x^5+25*x^4+4*x^3+30*x^2+9*x+24', 'y^2=6*x^6+30*x^5+17*x^4+22*x^3+5*x^2+10*x+17', 'y^2=7*x^6+31*x^5+30*x^4+34*x^3+13*x^2+19*x+26', 'y^2=27*x^6+31*x^5+14*x^4+32*x^3+26*x^2+7*x+3', 'y^2=31*x^6+13*x^5+12*x^4+10*x^3+32', 'y^2=13*x^6+4*x^5+19*x^4+30*x^3+23*x^2+31*x+10', 'y^2=11*x^6+30*x^5+9*x^4+34*x^3+20*x^2+29*x+10', 'y^2=17*x^6+14*x^5+22*x^4+19*x^3+29*x^2+34*x+18', 'y^2=34*x^6+16*x^5+24*x^4+19*x^3+18*x^2+24*x+33', 'y^2=14*x^6+12*x^5+21*x^4+26*x^3+24*x^2+20*x+14', 'y^2=15*x^6+31*x^5+15*x^3+18*x+20', 'y^2=15*x^5+25*x^4+36*x^3+7*x^2+26*x+8', 'y^2=28*x^6+28*x^5+x^4+27*x^3+8*x^2+18*x+14', 'y^2=21*x^6+19*x^5+15*x^4+36*x^3+23*x^2+8*x+12', 'y^2=3*x^6+27*x^5+34*x^4+9*x^3+36*x^2+3*x+33', 'y^2=17*x^6+6*x^5+15*x^4+6*x^3+34*x^2+11*x+27', 'y^2=15*x^6+15*x^5+20*x^4+34*x^3+x^2+23*x', 'y^2=7*x^5+24*x^4+9*x^3+x^2+9*x+21', 'y^2=33*x^6+3*x^5+21*x^4+23*x^3+24*x^2+30*x+19', 'y^2=9*x^6+31*x^5+28*x^4+2*x^3+29*x^2+4*x+29', 'y^2=20*x^6+14*x^5+11*x^4+28*x^3+27*x^2+29*x+20', 'y^2=5*x^6+25*x^4+30*x^2+18*x', 'y^2=13*x^6+31*x^4+23*x^3+26*x^2+32*x+8', 'y^2=16*x^6+18*x^5+20*x^4+31*x^2+2*x+29', 'y^2=33*x^6+x^5+26*x^4+34*x^3+24*x^2+17*x+14', 'y^2=5*x^6+20*x^5+26*x^4+36*x^3+26*x^2+20*x+5', 'y^2=25*x^6+17*x^5+8*x^4+x^3+36*x^2+36*x+15', 'y^2=24*x^6+31*x^5+13*x^4+27*x^3+5*x^2+28*x+1', 'y^2=5*x^5+x^4+22*x^3+33*x^2+6*x', 'y^2=25*x^6+24*x^5+3*x^4+31*x^3+30*x^2+35*x+15', 'y^2=30*x^6+9*x^5+34*x^4+35*x^3+31*x^2+x+2', 'y^2=2*x^6+9*x^5+7*x^4+4*x^3+4*x^2+29*x+34', 'y^2=24*x^6+34*x^5+16*x^3+x^2+8*x+20', 'y^2=21*x^6+19*x^5+21*x^4+20*x^3+9*x^2+5*x+16', 'y^2=17*x^6+28*x^5+26*x^4+21*x^3+25*x^2+2', 'y^2=2*x^6+5*x^4+25*x^3+17*x^2+6*x+27', 'y^2=8*x^6+8*x^5+23*x^4+5*x^3+8*x^2+31*x+6', 'y^2=20*x^6+10*x^5+13*x^4+26*x^3+11*x^2+31*x+5', 'y^2=31*x^6+12*x^5+22*x^4+29*x^3+35*x^2+17*x+2', 'y^2=32*x^6+8*x^5+7*x^4+15*x^3+20*x^2+4*x+18', 'y^2=24*x^6+35*x^5+33*x^4+3*x^3+10*x^2+28*x', 'y^2=9*x^5+16*x^4+27*x^3+34*x^2+4*x+19', 'y^2=31*x^6+34*x^5+3*x^4+2*x^3+3*x^2+34*x+31', 'y^2=13*x^6+x^5+19*x^3+21*x^2+12*x+15', 'y^2=25*x^6+5*x^5+17*x^4+11*x^3+35*x^2+13*x+25', 'y^2=22*x^6+16*x^5+10*x^4+33*x^3+32*x^2+19*x+11', 'y^2=8*x^6+2*x^5+9*x^4+30*x^3+14*x^2+34*x+12'], 'dim1_distinct': 2, 'dim1_factors': 2, 'dim2_distinct': 0, 'dim2_factors': 0, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 72, 'g': 2, 'galois_groups': ['2T1', '2T1'], 'geom_dim1_distinct': 2, 'geom_dim1_factors': 2, 'geom_dim2_distinct': 0, 'geom_dim2_factors': 0, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 4, 'geometric_extension_degree': 1, 'geometric_galois_groups': ['2T1', '2T1'], 'geometric_number_fields': ['2.0.3.1', '2.0.4.1'], 'geometric_splitting_field': '4.0.144.1', 'geometric_splitting_polynomials': [[1, 0, -1, 0, 1]], 'group_structure_count': 6, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 186, 'is_cyclic': False, 'is_geometrically_simple': False, 'is_geometrically_squarefree': True, 'is_primitive': True, 'is_simple': False, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 186, 'label': '2.37.ai_cc', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 12, 'newton_coelevation': 2, 'newton_elevation': 0, 'noncyclic_primes': [2], 'number_fields': ['2.0.3.1', '2.0.4.1'], 'p': 37, 'p_rank': 2, 'p_rank_deficit': 0, 'poly': [1, -8, 54, -296, 1369], 'poly_str': '1 -8 54 -296 1369 ', 'primitive_models': [], 'q': 37, 'real_poly': [1, -8, -20], 'simple_distinct': ['1.37.ak', '1.37.c'], 'simple_factors': ['1.37.akA', '1.37.cA'], 'simple_multiplicities': [1, 1], 'singular_primes': ['3,10*F+1', '2,-F-1'], 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '4.0.144.1', 'splitting_polynomials': [[1, 0, -1, 0, 1]], 'twist_count': 24, 'twists': [['2.37.am_dq', '2.1369.bs_bji', 2], ['2.37.i_cc', '2.1369.bs_bji', 2], ['2.37.m_dq', '2.1369.bs_bji', 2], ['2.37.b_cu', '2.50653.aea_elba', 3], ['2.37.n_ds', '2.50653.aea_elba', 3], ['2.37.aw_hm', '2.1874161.adw_abojxa', 4], ['2.37.ac_abu', '2.1874161.adw_abojxa', 4], ['2.37.c_abu', '2.1874161.adw_abojxa', 4], ['2.37.w_hm', '2.1874161.adw_abojxa', 4], ['2.37.an_ds', '2.2565726409.igca_bgqrfvny', 6], ['2.37.aj_ca', '2.2565726409.igca_bgqrfvny', 6], ['2.37.ad_cy', '2.2565726409.igca_bgqrfvny', 6], ['2.37.ab_cu', '2.2565726409.igca_bgqrfvny', 6], ['2.37.d_cy', '2.2565726409.igca_bgqrfvny', 6], ['2.37.j_ca', '2.2565726409.igca_bgqrfvny', 6], ['2.37.ax_hy', '2.6582952005840035281.acnimmye_czgmmoeqjpmkug', 12], ['2.37.an_di', '2.6582952005840035281.acnimmye_czgmmoeqjpmkug', 12], ['2.37.al_ck', '2.6582952005840035281.acnimmye_czgmmoeqjpmkug', 12], ['2.37.ab_acg', '2.6582952005840035281.acnimmye_czgmmoeqjpmkug', 12], ['2.37.b_acg', '2.6582952005840035281.acnimmye_czgmmoeqjpmkug', 12], ['2.37.l_ck', '2.6582952005840035281.acnimmye_czgmmoeqjpmkug', 12], ['2.37.n_di', '2.6582952005840035281.acnimmye_czgmmoeqjpmkug', 12], ['2.37.x_hy', '2.6582952005840035281.acnimmye_czgmmoeqjpmkug', 12]], 'weak_equivalence_count': 155, 'zfv_index': 3456, 'zfv_index_factorization': [[2, 7], [3, 3]], 'zfv_is_bass': False, 'zfv_is_maximal': False, 'zfv_plus_index': 1, 'zfv_plus_index_factorization': [], 'zfv_plus_norm': 6912, 'zfv_singular_count': 4, 'zfv_singular_primes': ['3,10*F+1', '2,-F-1']}
-
av_fq_endalg_factors • Show schema
Hide schema
-
id: 26322
{'base_label': '2.37.ai_cc', 'extension_degree': 1, 'extension_label': '1.37.ak', 'multiplicity': 1}
-
id: 26323
{'base_label': '2.37.ai_cc', 'extension_degree': 1, 'extension_label': '1.37.c', 'multiplicity': 1}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.3.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.37.ak', 'galois_group': '2T1', 'places': [['26', '1'], ['10', '1']]}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.4.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.37.c', 'galois_group': '2T1', 'places': [['31', '1'], ['6', '1']]}