Label |
Dimension |
Base field |
Base char. |
Simple |
Geom. simple |
Primitive |
Ordinary |
Almost ordinary |
Supersingular |
Princ. polarizable |
Jacobian |
L-polynomial |
Newton slopes |
Newton elevation |
$p$-rank |
$p$-corank |
Angle rank |
Angle corank |
$\mathbb{F}_q$ points on curve |
$\mathbb{F}_{q^k}$ points on curve |
$\mathbb{F}_q$ points on variety |
$\mathbb{F}_{q^k}$ points on variety |
Jacobians |
Hyperelliptic Jacobians |
Num. twists |
Max. twist degree |
End. degree |
Number fields |
Galois groups |
Isogeny factors |
1.8.af |
$1$ |
$\F_{2^{3}}$ |
$2$ |
✓ |
✓ |
|
✓ |
|
|
✓ |
✓ |
$1 - 5 x + 8 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$4$ |
$[4, 56, 508, 4144, 33044, 263144, 2099948, 16783200, 134225284, 1073731736]$ |
$4$ |
$[4, 56, 508, 4144, 33044, 263144, 2099948, 16783200, 134225284, 1073731736]$ |
$1$ |
$1$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-7}) \) |
$C_2$ |
simple |
1.8.ae |
$1$ |
$\F_{2^{3}}$ |
$2$ |
✓ |
✓ |
|
|
✓ |
✓ |
✓ |
✓ |
$1 - 4 x + 8 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$5$ |
$[5, 65, 545, 4225, 33025, 262145, 2095105, 16769025, 134201345, 1073741825]$ |
$5$ |
$[5, 65, 545, 4225, 33025, 262145, 2095105, 16769025, 134201345, 1073741825]$ |
$1$ |
$1$ |
$3$ |
$8$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
simple |
1.8.ad |
$1$ |
$\F_{2^{3}}$ |
$2$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 3 x + 8 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$6$ |
$[6, 72, 558, 4176, 32646, 261144, 2095134, 16779168, 134239734, 1073792232]$ |
$6$ |
$[6, 72, 558, 4176, 32646, 261144, 2095134, 16779168, 134239734, 1073792232]$ |
$3$ |
$3$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-23}) \) |
$C_2$ |
simple |
1.8.ab |
$1$ |
$\F_{2^{3}}$ |
$2$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - x + 8 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$8$ |
$[8, 80, 536, 4000, 32488, 262640, 2099896, 16776000, 134194568, 1073728400]$ |
$8$ |
$[8, 80, 536, 4000, 32488, 262640, 2099896, 16776000, 134194568, 1073728400]$ |
$3$ |
$3$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-31}) \) |
$C_2$ |
simple |
1.8.a |
$1$ |
$\F_{2^{3}}$ |
$2$ |
✓ |
✓ |
|
|
✓ |
✓ |
✓ |
✓ |
$1 + 8 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$9$ |
$[9, 81, 513, 3969, 32769, 263169, 2097153, 16769025, 134217729, 1073807361]$ |
$9$ |
$[9, 81, 513, 3969, 32769, 263169, 2097153, 16769025, 134217729, 1073807361]$ |
$1$ |
$1$ |
$3$ |
$8$ |
$2$ |
\(\Q(\sqrt{-2}) \) |
$C_2$ |
simple |
1.8.b |
$1$ |
$\F_{2^{3}}$ |
$2$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + x + 8 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$10$ |
$[10, 80, 490, 4000, 33050, 262640, 2094410, 16776000, 134240890, 1073728400]$ |
$10$ |
$[10, 80, 490, 4000, 33050, 262640, 2094410, 16776000, 134240890, 1073728400]$ |
$3$ |
$3$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-31}) \) |
$C_2$ |
simple |
1.8.d |
$1$ |
$\F_{2^{3}}$ |
$2$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 3 x + 8 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$12$ |
$[12, 72, 468, 4176, 32892, 261144, 2099172, 16779168, 134195724, 1073792232]$ |
$12$ |
$[12, 72, 468, 4176, 32892, 261144, 2099172, 16779168, 134195724, 1073792232]$ |
$3$ |
$3$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-23}) \) |
$C_2$ |
simple |
1.8.e |
$1$ |
$\F_{2^{3}}$ |
$2$ |
✓ |
✓ |
|
|
✓ |
✓ |
✓ |
✓ |
$1 + 4 x + 8 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$13$ |
$[13, 65, 481, 4225, 32513, 262145, 2099201, 16769025, 134234113, 1073741825]$ |
$13$ |
$[13, 65, 481, 4225, 32513, 262145, 2099201, 16769025, 134234113, 1073741825]$ |
$1$ |
$1$ |
$3$ |
$8$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
simple |
1.8.f |
$1$ |
$\F_{2^{3}}$ |
$2$ |
✓ |
✓ |
|
✓ |
|
|
✓ |
✓ |
$1 + 5 x + 8 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$14$ |
$[14, 56, 518, 4144, 32494, 263144, 2094358, 16783200, 134210174, 1073731736]$ |
$14$ |
$[14, 56, 518, 4144, 32494, 263144, 2094358, 16783200, 134210174, 1073731736]$ |
$1$ |
$1$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-7}) \) |
$C_2$ |
simple |
2.8.ak_bp |
$2$ |
$\F_{2^{3}}$ |
$2$ |
|
|
|
✓ |
|
|
✓ |
|
$( 1 - 5 x + 8 x^{2} )^{2}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$-1$ |
$[-1, 47, 503, 4191, 33319, 264143, 2102743, 16789183, 134232839, 1073721647]$ |
$16$ |
$[16, 3136, 258064, 17172736, 1091905936, 69244764736, 4409781602704, 281675802240000, 18016426864880656, 1152899840893573696]$ |
$0$ |
$0$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-7}) \) |
$C_2$ |
1.8.af 2 |
2.8.aj_bj |
$2$ |
$\F_{2^{3}}$ |
$2$ |
✓ |
|
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 9 x + 35 x^{2} - 72 x^{3} + 64 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$0$ |
$[0, 54, 513, 4090, 32490, 260583, 2092356, 16769074, 134217729, 1073781414]$ |
$19$ |
$[19, 3439, 261364, 16744491, 1064657989, 68311140496, 4387996235719, 281338409363859, 18014398647305836, 1152964013465503999]$ |
$1$ |
$1$ |
$4$ |
$12$ |
$6$ |
\(\Q(\sqrt{-3}, \sqrt{5})\) |
$C_2^2$ |
simple |
2.8.aj_bk |
$2$ |
$\F_{2^{3}}$ |
$2$ |
|
|
|
|
✓ |
|
✓ |
|
$( 1 - 5 x + 8 x^{2} )( 1 - 4 x + 8 x^{2} )$ |
$[0,\frac{1}{2},\frac{1}{2},1]$ |
$1$ |
$1$ |
$1$ |
$1$ |
$1$ |
$0$ |
$[0, 56, 540, 4272, 33300, 263144, 2097900, 16775008, 134208900, 1073731736]$ |
$20$ |
$[20, 3640, 276860, 17508400, 1091278100, 68981883880, 4399611554540, 281437900380000, 18013213645806980, 1152910673773058200]$ |
$0$ |
$0$ |
$6$ |
$8$ |
$4$ |
\(\Q(\sqrt{-7}) \), \(\Q(\sqrt{-1}) \) |
$C_2$, $C_2$ |
1.8.af $\times$ 1.8.ae |
2.8.ai_bf |
$2$ |
$\F_{2^{3}}$ |
$2$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 5 x + 8 x^{2} )( 1 - 3 x + 8 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$1$ |
$[1, 63, 553, 4223, 32921, 262143, 2097929, 16785151, 134247289, 1073782143]$ |
$24$ |
$[24, 4032, 283464, 17305344, 1078754424, 68718476736, 4399672453032, 281608132377600, 18018366420234456, 1152964797368674752]$ |
$3$ |
$3$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-7}) \), \(\Q(\sqrt{-23}) \) |
$C_2$, $C_2$ |
1.8.af $\times$ 1.8.ad |
2.8.ai_bg |
$2$ |
$\F_{2^{3}}$ |
$2$ |
|
|
|
|
|
✓ |
✓ |
✓ |
$( 1 - 4 x + 8 x^{2} )^{2}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$1$ |
$[1, 65, 577, 4353, 33281, 262145, 2093057, 16760833, 134184961, 1073741825]$ |
$25$ |
$[25, 4225, 297025, 17850625, 1090650625, 68720001025, 4389464961025, 281200199450625, 18010000999809025, 1152921506754330625]$ |
$1$ |
$1$ |
$11$ |
$24$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
1.8.ae 2 |
2.8.ah_y |
$2$ |
$\F_{2^{3}}$ |
$2$ |
✓ |
✓ |
|
|
✓ |
|
✓ |
✓ |
$1 - 7 x + 24 x^{2} - 56 x^{3} + 64 x^{4}$ |
$[0,\frac{1}{2},\frac{1}{2},1]$ |
$1$ |
$1$ |
$1$ |
$2$ |
$0$ |
$2$ |
$[2, 64, 506, 3936, 32202, 261712, 2099162, 16780224, 134202602, 1073703984]$ |
$26$ |
$[26, 3952, 258362, 16132064, 1055303626, 68606478928, 4402261596122, 281525456219072, 18012368433333482, 1152880874334874672]$ |
$1$ |
$1$ |
$2$ |
$2$ |
$1$ |
4.0.2312.1 |
$D_{4}$ |
simple |
2.8.ah_z |
$2$ |
$\F_{2^{3}}$ |
$2$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 7 x + 25 x^{2} - 56 x^{3} + 64 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$[2, 66, 527, 4034, 32482, 262431, 2101906, 16791298, 134231855, 1073736546]$ |
$27$ |
$[27, 4131, 269568, 16528131, 1064375667, 68794831872, 4408024115907, 281711299194243, 18016294529316096, 1152915834558818691]$ |
$3$ |
$3$ |
$2$ |
$2$ |
$1$ |
4.0.19097.1 |
$D_{4}$ |
simple |
2.8.ah_bb |
$2$ |
$\F_{2^{3}}$ |
$2$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 7 x + 27 x^{2} - 56 x^{3} + 64 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$[2, 70, 569, 4218, 32832, 262135, 2098574, 16783218, 134216777, 1073653350]$ |
$29$ |
$[29, 4495, 292436, 17283275, 1075764019, 68716611280, 4401031085081, 281575676928275, 18014270727064364, 1152826508971567375]$ |
$3$ |
$3$ |
$2$ |
$2$ |
$1$ |
4.0.7025.1 |
$D_{4}$ |
simple |
2.8.ah_bc |
$2$ |
$\F_{2^{3}}$ |
$2$ |
|
|
✓ |
|
✓ |
|
✓ |
|
$( 1 - 4 x + 8 x^{2} )( 1 - 3 x + 8 x^{2} )$ |
$[0,\frac{1}{2},\frac{1}{2},1]$ |
$1$ |
$1$ |
$1$ |
$1$ |
$1$ |
$2$ |
$[2, 72, 590, 4304, 32902, 261144, 2093086, 16770976, 134223350, 1073792232]$ |
$30$ |
$[30, 4680, 304110, 17643600, 1078134150, 68457593880, 4389525719070, 281370287671200, 18015152855242230, 1152975630858503400]$ |
$0$ |
$0$ |
$6$ |
$8$ |
$4$ |
\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-23}) \) |
$C_2$, $C_2$ |
1.8.ae $\times$ 1.8.ad |
2.8.ag_t |
$2$ |
$\F_{2^{3}}$ |
$2$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 6 x + 19 x^{2} - 48 x^{3} + 64 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$3$ |
$[3, 67, 495, 3919, 32523, 263059, 2099919, 16776031, 134217675, 1073838307]$ |
$30$ |
$[30, 4140, 253530, 16063200, 1065759150, 68959652940, 4403853146730, 281455085462400, 18014391213653790, 1153025105709206700]$ |
$6$ |
$6$ |
$2$ |
$2$ |
$1$ |
4.0.42048.4 |
$D_{4}$ |
simple |
2.8.ag_v |
$2$ |
$\F_{2^{3}}$ |
$2$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 5 x + 8 x^{2} )( 1 - x + 8 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$3$ |
$[3, 71, 531, 4047, 32763, 263639, 2102691, 16781983, 134202123, 1073718311]$ |
$32$ |
$[32, 4480, 272288, 16576000, 1073533472, 69112140160, 4409672405408, 281554963200000, 18012304001057312, 1152896258924502400]$ |
$6$ |
$6$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-7}) \), \(\Q(\sqrt{-31}) \) |
$C_2$, $C_2$ |
1.8.af $\times$ 1.8.ab |
2.8.ag_x |
$2$ |
$\F_{2^{3}}$ |
$2$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 6 x + 23 x^{2} - 48 x^{3} + 64 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$3$ |
$[3, 75, 567, 4159, 32763, 262635, 2099751, 16777279, 134182251, 1073620875]$ |
$34$ |
$[34, 4828, 291550, 17033184, 1073484754, 68848366300, 4403498979886, 281476022776704, 18009637291430050, 1152791641333286428]$ |
$6$ |
$6$ |
$2$ |
$2$ |
$1$ |
4.0.23616.1 |
$D_{4}$ |
simple |
2.8.ag_z |
$2$ |
$\F_{2^{3}}$ |
$2$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 3 x + 8 x^{2} )^{2}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$3$ |
$[3, 79, 603, 4255, 32523, 260143, 2093115, 16781119, 134261739, 1073842639]$ |
$36$ |
$[36, 5184, 311364, 17438976, 1065761316, 68196188736, 4389586477956, 281540478772224, 18020306184390756, 1153029757503541824]$ |
$3$ |
$3$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-23}) \) |
$C_2$ |
1.8.ad 2 |
2.8.af_n |
$2$ |
$\F_{2^{3}}$ |
$2$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 5 x + 13 x^{2} - 40 x^{3} + 64 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$4$ |
$[4, 66, 463, 3890, 32744, 262647, 2094908, 16771714, 134241079, 1073808186]$ |
$33$ |
$[33, 4059, 237996, 15947811, 1072956093, 68851290816, 4393343396937, 281382682901859, 18017532863094204, 1152992762416400499]$ |
$3$ |
$3$ |
$2$ |
$2$ |
$1$ |
4.0.56129.1 |
$D_{4}$ |
simple |
2.8.af_p |
$2$ |
$\F_{2^{3}}$ |
$2$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 5 x + 15 x^{2} - 40 x^{3} + 64 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$4$ |
$[4, 70, 493, 3978, 32994, 263935, 2099248, 16777458, 134244709, 1073842350]$ |
$35$ |
$[35, 4375, 252980, 16296875, 1081190425, 69190030000, 4402442340695, 281478989421875, 18018020111977340, 1153029447045109375]$ |
$6$ |
$6$ |
$2$ |
$2$ |
$1$ |
4.0.135401.1 |
$D_{4}$ |
simple |
2.8.af_q |
$2$ |
$\F_{2^{3}}$ |
$2$ |
|
|
|
|
✓ |
|
✓ |
✓ |
$( 1 - 5 x + 8 x^{2} )( 1 + 8 x^{2} )$ |
$[0,\frac{1}{2},\frac{1}{2},1]$ |
$1$ |
$1$ |
$1$ |
$1$ |
$1$ |
$4$ |
$[4, 72, 508, 4016, 33044, 264168, 2099948, 16775008, 134225284, 1073797272]$ |
$36$ |
$[36, 4536, 260604, 16447536, 1082818836, 69251343336, 4403912248044, 281437900380000, 18015412792860036, 1152981041856108696]$ |
$3$ |
$3$ |
$6$ |
$8$ |
$2$ |
\(\Q(\sqrt{-7}) \), \(\Q(\sqrt{-2}) \) |
$C_2$, $C_2$ |
1.8.af $\times$ 1.8.a |
2.8.af_r |
$2$ |
$\F_{2^{3}}$ |
$2$ |
✓ |
|
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 5 x + 17 x^{2} - 40 x^{3} + 64 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$4$ |
$[4, 74, 523, 4050, 33044, 264143, 2099948, 16771234, 134202619, 1073751914]$ |
$37$ |
$[37, 4699, 268324, 16582771, 1082796157, 69244764736, 4403913768613, 281374617640419, 18012370805110276, 1152932336616165499]$ |
$6$ |
$6$ |
$6$ |
$12$ |
$3$ |
\(\Q(\sqrt{-3}, \sqrt{-7})\) |
$C_2^2$ |
simple |
2.8.af_t |
$2$ |
$\F_{2^{3}}$ |
$2$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 5 x + 19 x^{2} - 40 x^{3} + 64 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$4$ |
$[4, 78, 553, 4106, 32894, 263367, 2098688, 16766098, 134173849, 1073716878]$ |
$39$ |
$[39, 5031, 284076, 16808571, 1077833289, 69040694736, 4401268359891, 281288494185075, 18008509783976244, 1152894719114747271]$ |
$6$ |
$6$ |
$2$ |
$2$ |
$1$ |
4.0.71825.2 |
$D_{4}$ |
simple |
2.8.af_u |
$2$ |
$\F_{2^{3}}$ |
$2$ |
|
|
✓ |
|
✓ |
|
✓ |
✓ |
$( 1 - 4 x + 8 x^{2} )( 1 - x + 8 x^{2} )$ |
$[0,\frac{1}{2},\frac{1}{2},1]$ |
$1$ |
$1$ |
$1$ |
$1$ |
$1$ |
$4$ |
$[4, 80, 568, 4128, 32744, 262640, 2097848, 16767808, 134178184, 1073728400]$ |
$40$ |
$[40, 5200, 292120, 16900000, 1072916200, 68849762800, 4399502609080, 281317163400000, 18009091517293960, 1152907091770330000]$ |
$3$ |
$3$ |
$6$ |
$8$ |
$4$ |
\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-31}) \) |
$C_2$, $C_2$ |
1.8.ae $\times$ 1.8.ab |
2.8.af_v |
$2$ |
$\F_{2^{3}}$ |
$2$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 5 x + 21 x^{2} - 40 x^{3} + 64 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$4$ |
$[4, 82, 583, 4146, 32544, 261703, 2097148, 16774338, 134200159, 1073742522]$ |
$41$ |
$[41, 5371, 300284, 16977731, 1066394461, 68604083776, 4398032021249, 281426689045475, 18012040556369516, 1152922252493109571]$ |
$3$ |
$3$ |
$2$ |
$2$ |
$1$ |
4.0.14225.1 |
$D_{4}$ |
simple |
2.8.ae_h |
$2$ |
$\F_{2^{3}}$ |
$2$ |
✓ |
✓ |
|
✓ |
|
|
✓ |
✓ |
$1 - 4 x + 7 x^{2} - 32 x^{3} + 64 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$5$ |
$[5, 63, 437, 3935, 32845, 261279, 2092837, 16778815, 134221757, 1073664063]$ |
$36$ |
$[36, 3888, 225612, 16127424, 1076196276, 68493095856, 4389003840348, 281501799061248, 18014939308409796, 1152838011359495088]$ |
$4$ |
$4$ |
$2$ |
$2$ |
$1$ |
4.0.2873.1 |
$D_{4}$ |
simple |
2.8.ae_i |
$2$ |
$\F_{2^{3}}$ |
$2$ |
✓ |
|
✓ |
|
|
✓ |
✓ |
✓ |
$1 - 4 x + 8 x^{2} - 32 x^{3} + 64 x^{4}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$5$ |
$[5, 65, 449, 3969, 33025, 262145, 2095105, 16785409, 134250497, 1073741825]$ |
$37$ |
$[37, 4033, 231361, 16265089, 1082163457, 68720001025, 4393753638913, 281612466003969, 18018797092896769, 1152921503533105153]$ |
$3$ |
$3$ |
$11$ |
$24$ |
$12$ |
\(\Q(\zeta_{12})\) |
$C_2^2$ |
simple |
2.8.ae_j |
$2$ |
$\F_{2^{3}}$ |
$2$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 4 x + 9 x^{2} - 32 x^{3} + 64 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$5$ |
$[5, 67, 461, 3999, 33165, 262819, 2096477, 16787391, 134260733, 1073757507]$ |
$38$ |
$[38, 4180, 237158, 16385600, 1086804598, 68896770580, 4396626639254, 281645720787200, 18020171136688262, 1152938342335426900]$ |
$6$ |
$6$ |
$2$ |
$2$ |
$1$ |
4.0.218768.2 |
$D_{4}$ |
simple |
2.8.ae_l |
$2$ |
$\F_{2^{3}}$ |
$2$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 5 x + 8 x^{2} )( 1 + x + 8 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$5$ |
$[5, 71, 485, 4047, 33325, 263639, 2097205, 16781983, 134248445, 1073718311]$ |
$40$ |
$[40, 4480, 248920, 16576000, 1092104200, 69112140160, 4398152090680, 281554963200000, 18018521584662760, 1152896258924502400]$ |
$15$ |
$15$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-7}) \), \(\Q(\sqrt{-31}) \) |
$C_2$, $C_2$ |
1.8.af $\times$ 1.8.b |
2.8.ae_n |
$2$ |
$\F_{2^{3}}$ |
$2$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 4 x + 13 x^{2} - 32 x^{3} + 64 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$5$ |
$[5, 75, 509, 4079, 33325, 263835, 2096365, 16771039, 134221757, 1073704875]$ |
$42$ |
$[42, 4788, 260946, 16700544, 1092097482, 69163737300, 4396395463698, 281371366531584, 18014939092520874, 1152881830255664628]$ |
$12$ |
$12$ |
$2$ |
$2$ |
$1$ |
4.0.257936.1 |
$D_{4}$ |
simple |
2.8.ae_p |
$2$ |
$\F_{2^{3}}$ |
$2$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 4 x + 15 x^{2} - 32 x^{3} + 64 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$5$ |
$[5, 79, 533, 4095, 33165, 263503, 2095301, 16762239, 134203709, 1073764239]$ |
$44$ |
$[44, 5104, 273284, 16761536, 1086807964, 69076356976, 4394167627124, 281223777131264, 18012516853887116, 1152945571357351024]$ |
$12$ |
$12$ |
$2$ |
$2$ |
$1$ |
4.0.11225.1 |
$D_{4}$ |
simple |
2.8.ae_q |
$2$ |
$\F_{2^{3}}$ |
$2$ |
|
|
|
|
|
✓ |
✓ |
✓ |
$( 1 - 4 x + 8 x^{2} )( 1 + 8 x^{2} )$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$5$ |
$[5, 81, 545, 4097, 33025, 263169, 2095105, 16760833, 134201345, 1073807361]$ |
$45$ |
$[45, 5265, 279585, 16769025, 1082196225, 68988437505, 4393755736065, 281200199450625, 18012199754645505, 1152991875498573825]$ |
$4$ |
$4$ |
$11$ |
$24$ |
$8$ |
\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-2}) \) |
$C_2$, $C_2$ |
1.8.ae $\times$ 1.8.a |
2.8.ae_r |
$2$ |
$\F_{2^{3}}$ |
$2$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 4 x + 17 x^{2} - 32 x^{3} + 64 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$5$ |
$[5, 83, 557, 4095, 32845, 262739, 2095357, 16762495, 134203517, 1073839763]$ |
$46$ |
$[46, 5428, 285982, 16761664, 1076284126, 68875332916, 4394281635118, 281228070198528, 18012491319904846, 1153026669191799988]$ |
$6$ |
$6$ |
$2$ |
$2$ |
$1$ |
4.0.83088.1 |
$D_{4}$ |
simple |
2.8.ae_t |
$2$ |
$\F_{2^{3}}$ |
$2$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 3 x + 8 x^{2} )( 1 - x + 8 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$5$ |
$[5, 87, 581, 4079, 32365, 261639, 2097877, 16777951, 134216573, 1073778807]$ |
$48$ |
$[48, 5760, 299088, 16704000, 1060603248, 68586860160, 4399563506064, 281487322368000, 18014243112564912, 1152961215197788800]$ |
$9$ |
$9$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-23}) \), \(\Q(\sqrt{-31}) \) |
$C_2$, $C_2$ |
1.8.ad $\times$ 1.8.ab |
2.8.ad_b |
$2$ |
$\F_{2^{3}}$ |
$2$ |
✓ |
|
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 3 x + x^{2} - 24 x^{3} + 64 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$6$ |
$[6, 58, 423, 4018, 32646, 260143, 2095134, 16775266, 134173719, 1073691418]$ |
$39$ |
$[39, 3627, 219024, 16455699, 1069693599, 68196188736, 4393814338407, 281442231389475, 18008492339884176, 1152867381969798027]$ |
$3$ |
$3$ |
$6$ |
$12$ |
$3$ |
\(\Q(\sqrt{-3}, \sqrt{-23})\) |
$C_2^2$ |
simple |
2.8.ad_d |
$2$ |
$\F_{2^{3}}$ |
$2$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 3 x + 3 x^{2} - 24 x^{3} + 64 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$6$ |
$[6, 62, 441, 4074, 33036, 261479, 2098410, 16790866, 134221833, 1073785982]$ |
$41$ |
$[41, 3895, 227468, 16690075, 1082548871, 68545207120, 4400686542797, 281704048420275, 18014949256511252, 1152968918632045975]$ |
$3$ |
$3$ |
$2$ |
$2$ |
$1$ |
4.0.271633.1 |
$D_{4}$ |
simple |
2.8.ad_e |
$2$ |
$\F_{2^{3}}$ |
$2$ |
✓ |
✓ |
✓ |
|
✓ |
|
✓ |
✓ |
$1 - 3 x + 4 x^{2} - 24 x^{3} + 64 x^{4}$ |
$[0,\frac{1}{2},\frac{1}{2},1]$ |
$1$ |
$1$ |
$1$ |
$2$ |
$0$ |
$6$ |
$[6, 64, 450, 4096, 33186, 261952, 2098914, 16793344, 134227746, 1073761984]$ |
$42$ |
$[42, 4032, 231714, 16781184, 1087503522, 68668907328, 4401742065378, 281745641463552, 18015742946273058, 1152943150333447872]$ |
$6$ |
$6$ |
$2$ |
$2$ |
$1$ |
4.0.90972.1 |
$D_{4}$ |
simple |
2.8.ad_f |
$2$ |
$\F_{2^{3}}$ |
$2$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 3 x + 5 x^{2} - 24 x^{3} + 64 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$6$ |
$[6, 66, 459, 4114, 33306, 262311, 2098830, 16793218, 134226963, 1073719146]$ |
$43$ |
$[43, 4171, 235984, 16855011, 1091471623, 68762905792, 4401564193699, 281743526487843, 18015638007852688, 1152897154112724691]$ |
$6$ |
$6$ |
$2$ |
$2$ |
$1$ |
4.0.429777.1 |
$D_{4}$ |
simple |
2.8.ad_h |
$2$ |
$\F_{2^{3}}$ |
$2$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 3 x + 7 x^{2} - 24 x^{3} + 64 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$6$ |
$[6, 70, 477, 4138, 33456, 262735, 2097402, 16787698, 134217621, 1073636350]$ |
$45$ |
$[45, 4455, 244620, 16951275, 1096437375, 68874228720, 4398568026345, 281650875484275, 18014384272166820, 1152808256483841375]$ |
$15$ |
$15$ |
$2$ |
$2$ |
$1$ |
4.0.6025.1 |
$D_{4}$ |
simple |
2.8.ad_i |
$2$ |
$\F_{2^{3}}$ |
$2$ |
✓ |
✓ |
✓ |
|
✓ |
|
✓ |
✓ |
$1 - 3 x + 8 x^{2} - 24 x^{3} + 64 x^{4}$ |
$[0,\frac{1}{2},\frac{1}{2},1]$ |
$1$ |
$1$ |
$1$ |
$2$ |
$0$ |
$6$ |
$[6, 72, 486, 4144, 33486, 262824, 2096310, 16783456, 134213598, 1073615832]$ |
$46$ |
$[46, 4600, 248998, 16974000, 1097431246, 68897746600, 4396278901942, 281579683068000, 18013844209627102, 1152786226763863000]$ |
$6$ |
$6$ |
$2$ |
$2$ |
$1$ |
4.0.121032.1 |
$D_{4}$ |
simple |
2.8.ad_j |
$2$ |
$\F_{2^{3}}$ |
$2$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 3 x + 9 x^{2} - 24 x^{3} + 64 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$6$ |
$[6, 74, 495, 4146, 33486, 262847, 2095134, 16778914, 134211951, 1073615834]$ |
$47$ |
$[47, 4747, 253424, 16980019, 1097431247, 68903958208, 4393814682143, 281503465731747, 18013622985316208, 1152786228911734747]$ |
$3$ |
$3$ |
$2$ |
$2$ |
$1$ |
4.0.461353.1 |
$D_{4}$ |
simple |
2.8.ad_l |
$2$ |
$\F_{2^{3}}$ |
$2$ |
✓ |
|
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 3 x + 11 x^{2} - 24 x^{3} + 64 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$6$ |
$[6, 78, 513, 4138, 33396, 262743, 2093034, 16770706, 134217729, 1073676318]$ |
$49$ |
$[49, 5047, 262444, 16942779, 1094451799, 68876853136, 4389416090437, 281365765866675, 18014398301069716, 1152851170218541927]$ |
$9$ |
$9$ |
$4$ |
$12$ |
$6$ |
\(\Q(\sqrt{-3}, \sqrt{29})\) |
$C_2^2$ |
simple |
2.8.ad_m |
$2$ |
$\F_{2^{3}}$ |
$2$ |
|
|
✓ |
|
✓ |
|
✓ |
✓ |
$( 1 - 4 x + 8 x^{2} )( 1 + x + 8 x^{2} )$ |
$[0,\frac{1}{2},\frac{1}{2},1]$ |
$1$ |
$1$ |
$1$ |
$1$ |
$1$ |
$6$ |
$[6, 80, 522, 4128, 33306, 262640, 2092362, 16767808, 134224506, 1073728400]$ |
$50$ |
$[50, 5200, 267050, 16900000, 1091476250, 68849762800, 4388008863050, 281317163400000, 18015307991997050, 1152907091770330000]$ |
$3$ |
$3$ |
$6$ |
$8$ |
$4$ |
\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-31}) \) |
$C_2$, $C_2$ |
1.8.ae $\times$ 1.8.b |
2.8.ad_n |
$2$ |
$\F_{2^{3}}$ |
$2$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 3 x + 13 x^{2} - 24 x^{3} + 64 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$6$ |
$[6, 82, 531, 4114, 33186, 262519, 2092110, 16766146, 134232363, 1073784682]$ |
$51$ |
$[51, 5355, 271728, 16841475, 1087514871, 68817833280, 4387481108187, 281289296391075, 18016362755695152, 1152967524456442275]$ |
$12$ |
$12$ |
$2$ |
$2$ |
$1$ |
4.0.243873.1 |
$D_{4}$ |
simple |
2.8.ad_p |
$2$ |
$\F_{2^{3}}$ |
$2$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 3 x + 15 x^{2} - 24 x^{3} + 64 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$6$ |
$[6, 86, 549, 4074, 32856, 262271, 2093370, 16767538, 134242893, 1073863646]$ |
$53$ |
$[53, 5671, 281324, 16678411, 1076657423, 68752209712, 4390120062689, 281312640178803, 18017776387762148, 1153052314746594991]$ |
$3$ |
$3$ |
$2$ |
$2$ |
$1$ |
4.0.113737.1 |
$D_{4}$ |
simple |
2.8.ad_q |
$2$ |
$\F_{2^{3}}$ |
$2$ |
|
|
✓ |
|
✓ |
|
✓ |
✓ |
$( 1 - 3 x + 8 x^{2} )( 1 + 8 x^{2} )$ |
$[0,\frac{1}{2},\frac{1}{2},1]$ |
$1$ |
$1$ |
$1$ |
$1$ |
$1$ |
$6$ |
$[6, 88, 558, 4048, 32646, 262168, 2095134, 16770976, 134239734, 1073857768]$ |
$54$ |
$[54, 5832, 286254, 16574544, 1069776774, 68725005336, 4393816553502, 281370287671200, 18017352239044086, 1153046002906219752]$ |
$3$ |
$3$ |
$6$ |
$8$ |
$2$ |
\(\Q(\sqrt{-23}) \), \(\Q(\sqrt{-2}) \) |
$C_2$, $C_2$ |
1.8.ad $\times$ 1.8.a |