Learn more

Refine search


Results (1-50 of 7799 matches)

Next   displayed columns for results
Label Dimension Base field L-polynomial $p$-rank Number fields Galois groups Isogeny factors
1.8.af $1$ $\F_{2^{3}}$ $1 - 5 x + 8 x^{2}$ $1$ \(\Q(\sqrt{-7}) \) $C_2$
1.8.ae $1$ $\F_{2^{3}}$ $1 - 4 x + 8 x^{2}$ $0$ \(\Q(\sqrt{-1}) \) $C_2$
1.8.ad $1$ $\F_{2^{3}}$ $1 - 3 x + 8 x^{2}$ $1$ \(\Q(\sqrt{-23}) \) $C_2$
1.8.ab $1$ $\F_{2^{3}}$ $1 - x + 8 x^{2}$ $1$ \(\Q(\sqrt{-31}) \) $C_2$
1.8.a $1$ $\F_{2^{3}}$ $1 + 8 x^{2}$ $0$ \(\Q(\sqrt{-2}) \) $C_2$
1.8.b $1$ $\F_{2^{3}}$ $1 + x + 8 x^{2}$ $1$ \(\Q(\sqrt{-31}) \) $C_2$
1.8.d $1$ $\F_{2^{3}}$ $1 + 3 x + 8 x^{2}$ $1$ \(\Q(\sqrt{-23}) \) $C_2$
1.8.e $1$ $\F_{2^{3}}$ $1 + 4 x + 8 x^{2}$ $0$ \(\Q(\sqrt{-1}) \) $C_2$
1.8.f $1$ $\F_{2^{3}}$ $1 + 5 x + 8 x^{2}$ $1$ \(\Q(\sqrt{-7}) \) $C_2$
2.8.ak_bp $2$ $\F_{2^{3}}$ $( 1 - 5 x + 8 x^{2} )^{2}$ $2$ \(\Q(\sqrt{-7}) \) $C_2$
2.8.aj_bj $2$ $\F_{2^{3}}$ $1 - 9 x + 35 x^{2} - 72 x^{3} + 64 x^{4}$ $2$ \(\Q(\sqrt{-3}, \sqrt{5})\) $C_2^2$
2.8.aj_bk $2$ $\F_{2^{3}}$ $( 1 - 5 x + 8 x^{2} )( 1 - 4 x + 8 x^{2} )$ $1$ \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{-1}) \) $C_2$, $C_2$
2.8.ai_bf $2$ $\F_{2^{3}}$ $( 1 - 5 x + 8 x^{2} )( 1 - 3 x + 8 x^{2} )$ $2$ \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{-23}) \) $C_2$, $C_2$
2.8.ai_bg $2$ $\F_{2^{3}}$ $( 1 - 4 x + 8 x^{2} )^{2}$ $0$ \(\Q(\sqrt{-1}) \) $C_2$
2.8.ah_y $2$ $\F_{2^{3}}$ $1 - 7 x + 24 x^{2} - 56 x^{3} + 64 x^{4}$ $1$ 4.0.2312.1 $D_{4}$
2.8.ah_z $2$ $\F_{2^{3}}$ $1 - 7 x + 25 x^{2} - 56 x^{3} + 64 x^{4}$ $2$ 4.0.19097.1 $D_{4}$
2.8.ah_bb $2$ $\F_{2^{3}}$ $1 - 7 x + 27 x^{2} - 56 x^{3} + 64 x^{4}$ $2$ 4.0.7025.1 $D_{4}$
2.8.ah_bc $2$ $\F_{2^{3}}$ $( 1 - 4 x + 8 x^{2} )( 1 - 3 x + 8 x^{2} )$ $1$ \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-23}) \) $C_2$, $C_2$
2.8.ag_t $2$ $\F_{2^{3}}$ $1 - 6 x + 19 x^{2} - 48 x^{3} + 64 x^{4}$ $2$ 4.0.42048.4 $D_{4}$
2.8.ag_v $2$ $\F_{2^{3}}$ $( 1 - 5 x + 8 x^{2} )( 1 - x + 8 x^{2} )$ $2$ \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{-31}) \) $C_2$, $C_2$
2.8.ag_x $2$ $\F_{2^{3}}$ $1 - 6 x + 23 x^{2} - 48 x^{3} + 64 x^{4}$ $2$ 4.0.23616.1 $D_{4}$
2.8.ag_z $2$ $\F_{2^{3}}$ $( 1 - 3 x + 8 x^{2} )^{2}$ $2$ \(\Q(\sqrt{-23}) \) $C_2$
2.8.af_n $2$ $\F_{2^{3}}$ $1 - 5 x + 13 x^{2} - 40 x^{3} + 64 x^{4}$ $2$ 4.0.56129.1 $D_{4}$
2.8.af_p $2$ $\F_{2^{3}}$ $1 - 5 x + 15 x^{2} - 40 x^{3} + 64 x^{4}$ $2$ 4.0.135401.1 $D_{4}$
2.8.af_q $2$ $\F_{2^{3}}$ $( 1 - 5 x + 8 x^{2} )( 1 + 8 x^{2} )$ $1$ \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{-2}) \) $C_2$, $C_2$
2.8.af_r $2$ $\F_{2^{3}}$ $1 - 5 x + 17 x^{2} - 40 x^{3} + 64 x^{4}$ $2$ \(\Q(\sqrt{-3}, \sqrt{-7})\) $C_2^2$
2.8.af_t $2$ $\F_{2^{3}}$ $1 - 5 x + 19 x^{2} - 40 x^{3} + 64 x^{4}$ $2$ 4.0.71825.2 $D_{4}$
2.8.af_u $2$ $\F_{2^{3}}$ $( 1 - 4 x + 8 x^{2} )( 1 - x + 8 x^{2} )$ $1$ \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-31}) \) $C_2$, $C_2$
2.8.af_v $2$ $\F_{2^{3}}$ $1 - 5 x + 21 x^{2} - 40 x^{3} + 64 x^{4}$ $2$ 4.0.14225.1 $D_{4}$
2.8.ae_h $2$ $\F_{2^{3}}$ $1 - 4 x + 7 x^{2} - 32 x^{3} + 64 x^{4}$ $2$ 4.0.2873.1 $D_{4}$
2.8.ae_i $2$ $\F_{2^{3}}$ $1 - 4 x + 8 x^{2} - 32 x^{3} + 64 x^{4}$ $0$ \(\Q(\zeta_{12})\) $C_2^2$
2.8.ae_j $2$ $\F_{2^{3}}$ $1 - 4 x + 9 x^{2} - 32 x^{3} + 64 x^{4}$ $2$ 4.0.218768.2 $D_{4}$
2.8.ae_l $2$ $\F_{2^{3}}$ $( 1 - 5 x + 8 x^{2} )( 1 + x + 8 x^{2} )$ $2$ \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{-31}) \) $C_2$, $C_2$
2.8.ae_n $2$ $\F_{2^{3}}$ $1 - 4 x + 13 x^{2} - 32 x^{3} + 64 x^{4}$ $2$ 4.0.257936.1 $D_{4}$
2.8.ae_p $2$ $\F_{2^{3}}$ $1 - 4 x + 15 x^{2} - 32 x^{3} + 64 x^{4}$ $2$ 4.0.11225.1 $D_{4}$
2.8.ae_q $2$ $\F_{2^{3}}$ $( 1 - 4 x + 8 x^{2} )( 1 + 8 x^{2} )$ $0$ \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-2}) \) $C_2$, $C_2$
2.8.ae_r $2$ $\F_{2^{3}}$ $1 - 4 x + 17 x^{2} - 32 x^{3} + 64 x^{4}$ $2$ 4.0.83088.1 $D_{4}$
2.8.ae_t $2$ $\F_{2^{3}}$ $( 1 - 3 x + 8 x^{2} )( 1 - x + 8 x^{2} )$ $2$ \(\Q(\sqrt{-23}) \), \(\Q(\sqrt{-31}) \) $C_2$, $C_2$
2.8.ad_b $2$ $\F_{2^{3}}$ $1 - 3 x + x^{2} - 24 x^{3} + 64 x^{4}$ $2$ \(\Q(\sqrt{-3}, \sqrt{-23})\) $C_2^2$
2.8.ad_d $2$ $\F_{2^{3}}$ $1 - 3 x + 3 x^{2} - 24 x^{3} + 64 x^{4}$ $2$ 4.0.271633.1 $D_{4}$
2.8.ad_e $2$ $\F_{2^{3}}$ $1 - 3 x + 4 x^{2} - 24 x^{3} + 64 x^{4}$ $1$ 4.0.90972.1 $D_{4}$
2.8.ad_f $2$ $\F_{2^{3}}$ $1 - 3 x + 5 x^{2} - 24 x^{3} + 64 x^{4}$ $2$ 4.0.429777.1 $D_{4}$
2.8.ad_h $2$ $\F_{2^{3}}$ $1 - 3 x + 7 x^{2} - 24 x^{3} + 64 x^{4}$ $2$ 4.0.6025.1 $D_{4}$
2.8.ad_i $2$ $\F_{2^{3}}$ $1 - 3 x + 8 x^{2} - 24 x^{3} + 64 x^{4}$ $1$ 4.0.121032.1 $D_{4}$
2.8.ad_j $2$ $\F_{2^{3}}$ $1 - 3 x + 9 x^{2} - 24 x^{3} + 64 x^{4}$ $2$ 4.0.461353.1 $D_{4}$
2.8.ad_l $2$ $\F_{2^{3}}$ $1 - 3 x + 11 x^{2} - 24 x^{3} + 64 x^{4}$ $2$ \(\Q(\sqrt{-3}, \sqrt{29})\) $C_2^2$
2.8.ad_m $2$ $\F_{2^{3}}$ $( 1 - 4 x + 8 x^{2} )( 1 + x + 8 x^{2} )$ $1$ \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-31}) \) $C_2$, $C_2$
2.8.ad_n $2$ $\F_{2^{3}}$ $1 - 3 x + 13 x^{2} - 24 x^{3} + 64 x^{4}$ $2$ 4.0.243873.1 $D_{4}$
2.8.ad_p $2$ $\F_{2^{3}}$ $1 - 3 x + 15 x^{2} - 24 x^{3} + 64 x^{4}$ $2$ 4.0.113737.1 $D_{4}$
2.8.ad_q $2$ $\F_{2^{3}}$ $( 1 - 3 x + 8 x^{2} )( 1 + 8 x^{2} )$ $1$ \(\Q(\sqrt{-23}) \), \(\Q(\sqrt{-2}) \) $C_2$, $C_2$
Next   displayed columns for results