Label |
Dimension |
Base field |
Base char. |
Simple |
Geom. simple |
Primitive |
Ordinary |
Almost ordinary |
Supersingular |
Princ. polarizable |
Jacobian |
L-polynomial |
Newton slopes |
Newton elevation |
$p$-rank |
$p$-corank |
Angle rank |
Angle corank |
$\mathbb{F}_q$ points on curve |
$\mathbb{F}_{q^k}$ points on curve |
$\mathbb{F}_q$ points on variety |
$\mathbb{F}_{q^k}$ points on variety |
Jacobians |
Hyperelliptic Jacobians |
Num. twists |
Max. twist degree |
End. degree |
Number fields |
Galois groups |
Isogeny factors |
1.7.af |
$1$ |
$\F_{7}$ |
$7$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 5 x + 7 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$3$ |
$[3, 39, 324, 2379, 16833, 117936, 824799, 5769075, 40366188, 282508239]$ |
$3$ |
$[3, 39, 324, 2379, 16833, 117936, 824799, 5769075, 40366188, 282508239]$ |
$1$ |
$1$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
1.7.ae |
$1$ |
$\F_{7}$ |
$7$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 4 x + 7 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$4$ |
$[4, 48, 364, 2496, 17044, 117936, 823036, 5760768, 40341028, 282453168]$ |
$4$ |
$[4, 48, 364, 2496, 17044, 117936, 823036, 5760768, 40341028, 282453168]$ |
$2$ |
$2$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
1.7.ad |
$1$ |
$\F_{7}$ |
$7$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 3 x + 7 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$5$ |
$[5, 55, 380, 2475, 16775, 117040, 821945, 5764275, 40363220, 282507775]$ |
$5$ |
$[5, 55, 380, 2475, 16775, 117040, 821945, 5764275, 40363220, 282507775]$ |
$1$ |
$1$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-19}) \) |
$C_2$ |
simple |
1.7.ac |
$1$ |
$\F_{7}$ |
$7$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 2 x + 7 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$6$ |
$[6, 60, 378, 2400, 16566, 117180, 824298, 5769600, 40357926, 282450300]$ |
$6$ |
$[6, 60, 378, 2400, 16566, 117180, 824298, 5769600, 40357926, 282450300]$ |
$2$ |
$2$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-6}) \) |
$C_2$ |
simple |
1.7.ab |
$1$ |
$\F_{7}$ |
$7$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - x + 7 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$7$ |
$[7, 63, 364, 2331, 16597, 117936, 825307, 5764563, 40341028, 282464343]$ |
$7$ |
$[7, 63, 364, 2331, 16597, 117936, 825307, 5764563, 40341028, 282464343]$ |
$2$ |
$2$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
1.7.a |
$1$ |
$\F_{7}$ |
$7$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 + 7 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$8$ |
$[8, 64, 344, 2304, 16808, 118336, 823544, 5760000, 40353608, 282508864]$ |
$8$ |
$[8, 64, 344, 2304, 16808, 118336, 823544, 5760000, 40353608, 282508864]$ |
$2$ |
$2$ |
$1$ |
$1$ |
$2$ |
\(\Q(\sqrt{-7}) \) |
$C_2$ |
simple |
1.7.b |
$1$ |
$\F_{7}$ |
$7$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + x + 7 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$9$ |
$[9, 63, 324, 2331, 17019, 117936, 821781, 5764563, 40366188, 282464343]$ |
$9$ |
$[9, 63, 324, 2331, 17019, 117936, 821781, 5764563, 40366188, 282464343]$ |
$2$ |
$2$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
1.7.c |
$1$ |
$\F_{7}$ |
$7$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 2 x + 7 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$10$ |
$[10, 60, 310, 2400, 17050, 117180, 822790, 5769600, 40349290, 282450300]$ |
$10$ |
$[10, 60, 310, 2400, 17050, 117180, 822790, 5769600, 40349290, 282450300]$ |
$2$ |
$2$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-6}) \) |
$C_2$ |
simple |
1.7.d |
$1$ |
$\F_{7}$ |
$7$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 3 x + 7 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$11$ |
$[11, 55, 308, 2475, 16841, 117040, 825143, 5764275, 40343996, 282507775]$ |
$11$ |
$[11, 55, 308, 2475, 16841, 117040, 825143, 5764275, 40343996, 282507775]$ |
$1$ |
$1$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-19}) \) |
$C_2$ |
simple |
1.7.e |
$1$ |
$\F_{7}$ |
$7$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 4 x + 7 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$12$ |
$[12, 48, 324, 2496, 16572, 117936, 824052, 5760768, 40366188, 282453168]$ |
$12$ |
$[12, 48, 324, 2496, 16572, 117936, 824052, 5760768, 40366188, 282453168]$ |
$2$ |
$2$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
1.7.f |
$1$ |
$\F_{7}$ |
$7$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 5 x + 7 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$13$ |
$[13, 39, 364, 2379, 16783, 117936, 822289, 5769075, 40341028, 282508239]$ |
$13$ |
$[13, 39, 364, 2379, 16783, 117936, 822289, 5769075, 40341028, 282508239]$ |
$1$ |
$1$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
2.7.ak_bn |
$2$ |
$\F_{7}$ |
$7$ |
|
|
✓ |
✓ |
|
|
✓ |
|
$( 1 - 5 x + 7 x^{2} )^{2}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$-2$ |
$[-2, 28, 304, 2356, 16858, 118222, 826054, 5773348, 40378768, 282541228]$ |
$9$ |
$[9, 1521, 104976, 5659641, 283349889, 13908900096, 680293390401, 33282226355625, 1629429133651344, 79810905102881121]$ |
$0$ |
$0$ |
$24$ |
$12$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
1.7.af 2 |
2.7.aj_bi |
$2$ |
$\F_{7}$ |
$7$ |
|
|
✓ |
✓ |
|
|
✓ |
|
$( 1 - 5 x + 7 x^{2} )( 1 - 4 x + 7 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$-1$ |
$[-1, 37, 344, 2473, 17069, 118222, 824291, 5765041, 40353608, 282486157]$ |
$12$ |
$[12, 1872, 117936, 5937984, 286901652, 13908900096, 678839269764, 33234302649600, 1628413520361264, 79795347091651152]$ |
$0$ |
$0$ |
$24$ |
$12$ |
$6$ |
\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-3}) \) |
$C_2$, $C_2$ |
1.7.af $\times$ 1.7.ae |
2.7.ai_bd |
$2$ |
$\F_{7}$ |
$7$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 5 x + 7 x^{2} )( 1 - 3 x + 7 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$0$ |
$[0, 44, 360, 2452, 16800, 117326, 823200, 5768548, 40375800, 282540764]$ |
$15$ |
$[15, 2145, 123120, 5888025, 282373575, 13803229440, 677939414055, 33254534795625, 1629309326805360, 79810774019058225]$ |
$1$ |
$1$ |
$12$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-19}) \) |
$C_2$, $C_2$ |
1.7.af $\times$ 1.7.ad |
2.7.ai_be |
$2$ |
$\F_{7}$ |
$7$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 4 x + 7 x^{2} )^{2}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$0$ |
$[0, 46, 384, 2590, 17280, 118222, 822528, 5756734, 40328448, 282431086]$ |
$16$ |
$[16, 2304, 132496, 6230016, 290497936, 13908900096, 677388257296, 33186447949824, 1627398540096784, 79779792113236224]$ |
$1$ |
$1$ |
$24$ |
$12$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
1.7.ae 2 |
2.7.ah_y |
$2$ |
$\F_{7}$ |
$7$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 5 x + 7 x^{2} )( 1 - 2 x + 7 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$1$ |
$[1, 49, 358, 2377, 16591, 117466, 825553, 5773873, 40370506, 282483289]$ |
$18$ |
$[18, 2340, 122472, 5709600, 278855478, 13819740480, 679880166102, 33285255120000, 1629095628206088, 79794536858021700]$ |
$1$ |
$1$ |
$12$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-6}) \) |
$C_2$, $C_2$ |
1.7.af $\times$ 1.7.ac |
2.7.ah_z |
$2$ |
$\F_{7}$ |
$7$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 7 x + 25 x^{2} - 49 x^{3} + 49 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$1$ |
$[1, 51, 379, 2475, 16836, 117687, 824965, 5771619, 40366243, 282461086]$ |
$19$ |
$[19, 2489, 130321, 5946221, 282939184, 13845433361, 679394596669, 33272252045909, 1628923563606439, 79788265901524224]$ |
$1$ |
$1$ |
$2$ |
$2$ |
$1$ |
4.0.3725.1 |
$D_{4}$ |
simple |
2.7.ah_ba |
$2$ |
$\F_{7}$ |
$7$ |
|
|
✓ |
✓ |
|
|
✓ |
|
$( 1 - 4 x + 7 x^{2} )( 1 - 3 x + 7 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$1$ |
$[1, 53, 400, 2569, 17011, 117326, 821437, 5760241, 40350640, 282485693]$ |
$20$ |
$[20, 2640, 138320, 6177600, 285913100, 13803229440, 676490325020, 33206650963200, 1628293788190160, 79795216033381200]$ |
$0$ |
$0$ |
$12$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-19}) \) |
$C_2$, $C_2$ |
1.7.ae $\times$ 1.7.ad |
2.7.ag_s |
$2$ |
$\F_{7}$ |
$7$ |
✓ |
|
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 6 x + 18 x^{2} - 42 x^{3} + 49 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$2$ |
$[2, 50, 326, 2238, 16442, 117650, 824126, 5760958, 40338002, 282475250]$ |
$20$ |
$[20, 2320, 111620, 5382400, 276390500, 13841326480, 678702544820, 33210785894400, 1627783961277620, 79792266845818000]$ |
$2$ |
$2$ |
$4$ |
$8$ |
$4$ |
\(\Q(i, \sqrt{5})\) |
$C_2^2$ |
simple |
2.7.ag_t |
$2$ |
$\F_{7}$ |
$7$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 5 x + 7 x^{2} )( 1 - x + 7 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$2$ |
$[2, 52, 344, 2308, 16622, 118222, 826562, 5768836, 40353608, 282497332]$ |
$21$ |
$[21, 2457, 117936, 5545449, 279377301, 13908900096, 680712388293, 33256196289225, 1628413520361264, 79798504121221977]$ |
$4$ |
$4$ |
$24$ |
$12$ |
$6$ |
\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-3}) \) |
$C_2$, $C_2$ |
1.7.af $\times$ 1.7.ab |
2.7.ag_u |
$2$ |
$\F_{7}$ |
$7$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 6 x + 20 x^{2} - 42 x^{3} + 49 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$[2, 54, 362, 2374, 16742, 118374, 827150, 5770558, 40349666, 282452454]$ |
$22$ |
$[22, 2596, 124366, 5700816, 281356702, 13926753412, 681197670406, 33266131227648, 1628254536931462, 79785827495349316]$ |
$2$ |
$2$ |
$2$ |
$2$ |
$1$ |
4.0.21312.1 |
$D_{4}$ |
simple |
2.7.ag_v |
$2$ |
$\F_{7}$ |
$7$ |
✓ |
✓ |
✓ |
|
✓ |
|
✓ |
✓ |
$1 - 6 x + 21 x^{2} - 42 x^{3} + 49 x^{4}$ |
$[0,\frac{1}{2},\frac{1}{2},1]$ |
$1$ |
$1$ |
$1$ |
$2$ |
$0$ |
$2$ |
$[2, 56, 380, 2436, 16802, 118118, 826142, 5768644, 40342052, 282411416]$ |
$23$ |
$[23, 2737, 130916, 5848969, 282342503, 13896471568, 680365917527, 33255091162377, 1627947385063652, 79774236353790097]$ |
$2$ |
$2$ |
$2$ |
$2$ |
$1$ |
4.0.13888.1 |
$D_{4}$ |
simple |
2.7.ag_w |
$2$ |
$\F_{7}$ |
$7$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 4 x + 7 x^{2} )( 1 - 2 x + 7 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$[2, 58, 398, 2494, 16802, 117466, 823790, 5765566, 40345346, 282428218]$ |
$24$ |
$[24, 2880, 137592, 5990400, 282350904, 13819740480, 678426928728, 33237327052800, 1628080222787928, 79778982037550400]$ |
$4$ |
$4$ |
$12$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-6}) \) |
$C_2$, $C_2$ |
1.7.ae $\times$ 1.7.ac |
2.7.ag_x |
$2$ |
$\F_{7}$ |
$7$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 3 x + 7 x^{2} )^{2}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$2$ |
$[2, 60, 416, 2548, 16742, 116430, 820346, 5763748, 40372832, 282540300]$ |
$25$ |
$[25, 3025, 144400, 6125625, 281400625, 13698361600, 675593583025, 33226866275625, 1629189528768400, 79810642935450625]$ |
$1$ |
$1$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-19}) \) |
$C_2$ |
1.7.ad 2 |
2.7.af_n |
$2$ |
$\F_{7}$ |
$7$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 5 x + 13 x^{2} - 35 x^{3} + 49 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$3$ |
$[3, 51, 309, 2235, 16708, 118047, 822699, 5760099, 40359873, 282518686]$ |
$23$ |
$[23, 2369, 106421, 5375261, 280821168, 13888046921, 677529002537, 33205830710069, 1628666502870659, 79804536835233024]$ |
$1$ |
$1$ |
$2$ |
$2$ |
$1$ |
4.0.24389.1 |
$C_4$ |
simple |
2.7.af_o |
$2$ |
$\F_{7}$ |
$7$ |
|
|
✓ |
|
✓ |
|
✓ |
✓ |
$( 1 - 5 x + 7 x^{2} )( 1 + 7 x^{2} )$ |
$[0,\frac{1}{2},\frac{1}{2},1]$ |
$1$ |
$1$ |
$1$ |
$1$ |
$1$ |
$3$ |
$[3, 53, 324, 2281, 16833, 118622, 824799, 5764273, 40366188, 282541853]$ |
$24$ |
$[24, 2496, 111456, 5481216, 282929064, 13956074496, 679258267656, 33229872000000, 1628921327006304, 79811081670530496]$ |
$2$ |
$2$ |
$6$ |
$6$ |
$2$ |
\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-7}) \) |
$C_2$, $C_2$ |
1.7.af $\times$ 1.7.a |
2.7.af_p |
$2$ |
$\F_{7}$ |
$7$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 5 x + 15 x^{2} - 35 x^{3} + 49 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$3$ |
$[3, 55, 339, 2323, 16908, 118915, 825849, 5764723, 40358013, 282517150]$ |
$25$ |
$[25, 2625, 116575, 5578125, 284182000, 13990748625, 680123884675, 33232466203125, 1628591397293725, 79804102912800000]$ |
$4$ |
$4$ |
$2$ |
$2$ |
$1$ |
4.0.62181.1 |
$D_{4}$ |
simple |
2.7.af_q |
$2$ |
$\F_{7}$ |
$7$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 5 x + 16 x^{2} - 35 x^{3} + 49 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$3$ |
$[3, 57, 354, 2361, 16933, 118938, 826059, 5763153, 40344078, 282478897]$ |
$26$ |
$[26, 2756, 121784, 5666336, 284585886, 13993468736, 680297445854, 33223427868800, 1628029116513176, 79793296617432996]$ |
$2$ |
$2$ |
$2$ |
$2$ |
$1$ |
4.0.57800.1 |
$D_{4}$ |
simple |
2.7.af_r |
$2$ |
$\F_{7}$ |
$7$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 5 x + 17 x^{2} - 35 x^{3} + 49 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$3$ |
$[3, 59, 369, 2395, 16908, 118703, 825639, 5761219, 40332033, 282450014]$ |
$27$ |
$[27, 2889, 127089, 5746221, 284148432, 13965683121, 679950980253, 33212289700629, 1627543164886911, 79785138039047424]$ |
$3$ |
$3$ |
$2$ |
$2$ |
$1$ |
4.0.4901.1 |
$D_{4}$ |
simple |
2.7.af_s |
$2$ |
$\F_{7}$ |
$7$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 4 x + 7 x^{2} )( 1 - x + 7 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$3$ |
$[3, 61, 384, 2425, 16833, 118222, 824799, 5760529, 40328448, 282442261]$ |
$28$ |
$[28, 3024, 132496, 5818176, 282879268, 13908900096, 679257372052, 33208310064384, 1627398540096784, 79782948527388624]$ |
$3$ |
$3$ |
$24$ |
$12$ |
$3$ |
\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-3}) \) |
$C_2$, $C_2$ |
1.7.ae $\times$ 1.7.ab |
2.7.af_t |
$2$ |
$\F_{7}$ |
$7$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 5 x + 19 x^{2} - 35 x^{3} + 49 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$3$ |
$[3, 63, 399, 2451, 16708, 117507, 823749, 5762643, 40338813, 282456478]$ |
$29$ |
$[29, 3161, 138011, 5882621, 280790064, 13824699881, 678390859511, 33220484376725, 1627816699785209, 79786963920266496]$ |
$1$ |
$1$ |
$2$ |
$2$ |
$1$ |
4.0.9725.1 |
$D_{4}$ |
simple |
2.7.af_u |
$2$ |
$\F_{7}$ |
$7$ |
|
|
✓ |
✓ |
|
|
✓ |
|
$( 1 - 3 x + 7 x^{2} )( 1 - 2 x + 7 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$3$ |
$[3, 65, 414, 2473, 16533, 116570, 822699, 5769073, 40367538, 282482825]$ |
$30$ |
$[30, 3300, 143640, 5940000, 277894650, 13714747200, 677527619610, 33257561040000, 1628975845881720, 79794405801082500]$ |
$0$ |
$0$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-19}) \), \(\Q(\sqrt{-6}) \) |
$C_2$, $C_2$ |
1.7.ad $\times$ 1.7.ac |
2.7.ae_i |
$2$ |
$\F_{7}$ |
$7$ |
✓ |
|
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 4 x + 8 x^{2} - 28 x^{3} + 49 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$4$ |
$[4, 50, 292, 2278, 16924, 117650, 821692, 5766718, 40370404, 282475250]$ |
$26$ |
$[26, 2340, 101114, 5475600, 284431706, 13841495460, 676699584314, 33243988377600, 1629091518163226, 79792266455518500]$ |
$3$ |
$3$ |
$4$ |
$8$ |
$4$ |
\(\Q(i, \sqrt{10})\) |
$C_2^2$ |
simple |
2.7.ae_j |
$2$ |
$\F_{7}$ |
$7$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 5 x + 7 x^{2} )( 1 + x + 7 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$4$ |
$[4, 52, 304, 2308, 17044, 118222, 823036, 5768836, 40378768, 282497332]$ |
$27$ |
$[27, 2457, 104976, 5545449, 286480827, 13908900096, 677804147019, 33256196289225, 1629429133651344, 79798504121221977]$ |
$6$ |
$6$ |
$24$ |
$12$ |
$3$ |
\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-3}) \) |
$C_2$, $C_2$ |
1.7.af $\times$ 1.7.b |
2.7.ae_k |
$2$ |
$\F_{7}$ |
$7$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 4 x + 10 x^{2} - 28 x^{3} + 49 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$4$ |
$[4, 54, 316, 2334, 17124, 118614, 823708, 5767998, 40376260, 282491254]$ |
$28$ |
$[28, 2576, 108892, 5605376, 287844508, 13955163152, 678356898268, 33251359490048, 1629327895324444, 79796787595788816]$ |
$7$ |
$7$ |
$2$ |
$2$ |
$1$ |
4.0.2048.2 |
$C_4$ |
simple |
2.7.ae_l |
$2$ |
$\F_{7}$ |
$7$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 4 x + 11 x^{2} - 28 x^{3} + 49 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$4$ |
$[4, 56, 328, 2356, 17164, 118838, 823876, 5765284, 40367704, 282477416]$ |
$29$ |
$[29, 2697, 112868, 5655609, 288523349, 13981636368, 678495801173, 33235712260137, 1628982534424868, 79792878597781497]$ |
$2$ |
$2$ |
$2$ |
$2$ |
$1$ |
4.0.138768.1 |
$D_{4}$ |
simple |
2.7.ae_m |
$2$ |
$\F_{7}$ |
$7$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 4 x + 12 x^{2} - 28 x^{3} + 49 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$4$ |
$[4, 58, 340, 2374, 17164, 118906, 823708, 5761726, 40357060, 282469018]$ |
$30$ |
$[30, 2820, 116910, 5696400, 288519150, 13989684420, 678358578270, 33215207116800, 1628552932173630, 79790505847004100]$ |
$4$ |
$4$ |
$2$ |
$2$ |
$1$ |
4.0.131328.1 |
$D_{4}$ |
simple |
2.7.ae_n |
$2$ |
$\F_{7}$ |
$7$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 4 x + 13 x^{2} - 28 x^{3} + 49 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$4$ |
$[4, 60, 352, 2388, 17124, 118830, 823372, 5758308, 40347424, 282472300]$ |
$31$ |
$[31, 2945, 121024, 5728025, 287835031, 13980692480, 678082855159, 33195514450025, 1628164076522176, 79791432551708625]$ |
$6$ |
$6$ |
$2$ |
$2$ |
$1$ |
4.0.7025.1 |
$D_{4}$ |
simple |
2.7.ae_o |
$2$ |
$\F_{7}$ |
$7$ |
|
|
✓ |
|
✓ |
|
✓ |
✓ |
$( 1 - 4 x + 7 x^{2} )( 1 + 7 x^{2} )$ |
$[0,\frac{1}{2},\frac{1}{2},1]$ |
$1$ |
$1$ |
$1$ |
$1$ |
$1$ |
$4$ |
$[4, 62, 364, 2398, 17044, 118622, 823036, 5755966, 40341028, 282486782]$ |
$32$ |
$[32, 3072, 125216, 5750784, 286475552, 13956074496, 677806359584, 33182023680000, 1627906030229024, 79795523624881152]$ |
$6$ |
$6$ |
$6$ |
$6$ |
$2$ |
\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-7}) \) |
$C_2$, $C_2$ |
1.7.ae $\times$ 1.7.a |
2.7.ae_p |
$2$ |
$\F_{7}$ |
$7$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 4 x + 15 x^{2} - 28 x^{3} + 49 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$4$ |
$[4, 64, 376, 2404, 16924, 118294, 822868, 5755588, 40339240, 282505504]$ |
$33$ |
$[33, 3201, 129492, 5765001, 284446833, 13917282192, 677667180993, 33179846400393, 1627833927059604, 79800812894107041]$ |
$2$ |
$2$ |
$2$ |
$2$ |
$1$ |
4.0.56592.1 |
$D_{4}$ |
simple |
2.7.ae_q |
$2$ |
$\F_{7}$ |
$7$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 4 x + 16 x^{2} - 28 x^{3} + 49 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$4$ |
$[4, 66, 388, 2406, 16764, 117858, 823036, 5758014, 40342564, 282515266]$ |
$34$ |
$[34, 3332, 133858, 5771024, 281756674, 13865814788, 677804095618, 33193822011392, 1627968017262178, 79803570767082372]$ |
$4$ |
$4$ |
$2$ |
$2$ |
$1$ |
4.0.28928.2 |
$D_{4}$ |
simple |
2.7.ae_r |
$2$ |
$\F_{7}$ |
$7$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 3 x + 7 x^{2} )( 1 - x + 7 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$4$ |
$[4, 68, 400, 2404, 16564, 117326, 823708, 5764036, 40350640, 282496868]$ |
$35$ |
$[35, 3465, 138320, 5769225, 278414675, 13803229440, 678356962115, 33228526386825, 1628293788190160, 79798373057766825]$ |
$4$ |
$4$ |
$12$ |
$6$ |
$1$ |
\(\Q(\sqrt{-19}) \), \(\Q(\sqrt{-3}) \) |
$C_2$, $C_2$ |
1.7.ad $\times$ 1.7.ab |
2.7.ae_s |
$2$ |
$\F_{7}$ |
$7$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 2 x + 7 x^{2} )^{2}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$4$ |
$[4, 70, 412, 2398, 16324, 116710, 825052, 5774398, 40362244, 282425350]$ |
$36$ |
$[36, 3600, 142884, 5760000, 274432356, 13731152400, 679467192804, 33288284160000, 1628762191021476, 79778171970090000]$ |
$3$ |
$3$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-6}) \) |
$C_2$ |
1.7.ac 2 |
2.7.ad_c |
$2$ |
$\F_{7}$ |
$7$ |
✓ |
|
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 3 x + 2 x^{2} - 21 x^{3} + 49 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$5$ |
$[5, 45, 272, 2329, 16775, 116430, 821945, 5765329, 40334384, 282442725]$ |
$28$ |
$[28, 2128, 94864, 5592384, 281904868, 13698361600, 676907959252, 33235963133184, 1627638013248016, 79783079565506128]$ |
$1$ |
$1$ |
$6$ |
$12$ |
$3$ |
\(\Q(\sqrt{-3}, \sqrt{-19})\) |
$C_2^2$ |
simple |
2.7.ad_d |
$2$ |
$\F_{7}$ |
$7$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 3 x + 3 x^{2} - 21 x^{3} + 49 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$5$ |
$[5, 47, 281, 2355, 16940, 117011, 823331, 5771155, 40353419, 282482462]$ |
$29$ |
$[29, 2233, 97643, 5656189, 284706224, 13766393641, 678049225127, 33269573605653, 1628406000841529, 79794303640108288]$ |
$3$ |
$3$ |
$2$ |
$2$ |
$1$ |
4.0.103933.1 |
$D_{4}$ |
simple |
2.7.ad_e |
$2$ |
$\F_{7}$ |
$7$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 5 x + 7 x^{2} )( 1 + 2 x + 7 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$5$ |
$[5, 49, 290, 2377, 17075, 117466, 824045, 5773873, 40361870, 282483289]$ |
$30$ |
$[30, 2340, 100440, 5709600, 287002650, 13819740480, 678636369210, 33285255120000, 1628747025806520, 79794536858021700]$ |
$2$ |
$2$ |
$12$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-6}) \) |
$C_2$, $C_2$ |
1.7.af $\times$ 1.7.c |
2.7.ad_f |
$2$ |
$\F_{7}$ |
$7$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 3 x + 5 x^{2} - 21 x^{3} + 49 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$5$ |
$[5, 51, 299, 2395, 17180, 117807, 824213, 5774179, 40363463, 282464286]$ |
$31$ |
$[31, 2449, 103261, 5752701, 288791536, 13859794681, 678773788801, 33287020624629, 1628811352340059, 79789169211245824]$ |
$3$ |
$3$ |
$2$ |
$2$ |
$1$ |
4.0.2725.1 |
$D_{4}$ |
simple |
2.7.ad_g |
$2$ |
$\F_{7}$ |
$7$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 3 x + 6 x^{2} - 21 x^{3} + 49 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$5$ |
$[5, 53, 308, 2409, 17255, 118046, 823961, 5772721, 40361276, 282440093]$ |
$32$ |
$[32, 2560, 106112, 5785600, 290070752, 13887938560, 678565710176, 33278609203200, 1628723122905728, 79782335941388800]$ |
$6$ |
$6$ |
$2$ |
$2$ |
$1$ |
4.0.62197.1 |
$D_{4}$ |
simple |
2.7.ad_h |
$2$ |
$\F_{7}$ |
$7$ |
✓ |
✓ |
✓ |
|
✓ |
|
✓ |
✓ |
$1 - 3 x + 7 x^{2} - 21 x^{3} + 49 x^{4}$ |
$[0,\frac{1}{2},\frac{1}{2},1]$ |
$1$ |
$1$ |
$1$ |
$2$ |
$0$ |
$5$ |
$[5, 55, 317, 2419, 17300, 118195, 823415, 5770099, 40357739, 282421150]$ |
$33$ |
$[33, 2673, 108999, 5808429, 290838768, 13905547425, 678116146587, 33263484668469, 1628580369069621, 79776985647414528]$ |
$6$ |
$6$ |
$2$ |
$2$ |
$1$ |
4.0.28749.1 |
$D_{4}$ |
simple |
2.7.ad_i |
$2$ |
$\F_{7}$ |
$7$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 3 x + 8 x^{2} - 21 x^{3} + 49 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$5$ |
$[5, 57, 326, 2425, 17315, 118266, 822701, 5766865, 40354634, 282413937]$ |
$34$ |
$[34, 2788, 111928, 5821344, 291094774, 13913993536, 677528881462, 33244834025088, 1628455010663704, 79774948395259588]$ |
$2$ |
$2$ |
$2$ |
$2$ |
$1$ |
4.0.252648.2 |
$D_{4}$ |
simple |