Label |
Dimension |
Base field |
Base char. |
Simple |
Geom. simple |
Primitive |
Ordinary |
Almost ordinary |
Supersingular |
Princ. polarizable |
Jacobian |
L-polynomial |
Newton slopes |
Newton elevation |
$p$-rank |
$p$-corank |
Angle rank |
Angle corank |
$\mathbb{F}_q$ points on curve |
$\mathbb{F}_{q^k}$ points on curve |
$\mathbb{F}_q$ points on variety |
$\mathbb{F}_{q^k}$ points on variety |
Jacobians |
Hyperelliptic Jacobians |
Num. twists |
Max. twist degree |
End. degree |
Number fields |
Galois groups |
Isogeny factors |
1.223.abd |
$1$ |
$\F_{223}$ |
$223$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 29 x + 223 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$195$ |
$[195, 49335, 11084580, 2472916875, 551472549225, 122978493546480, 27424204702631295, 6115597641637501875, 1363778273737619969580, 304122555034982496416175]$ |
$195$ |
$[195, 49335, 11084580, 2472916875, 551472549225, 122978493546480, 27424204702631295, 6115597641637501875, 1363778273737619969580, 304122555034982496416175]$ |
$2$ |
$2$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-51}) \) |
$C_2$ |
simple |
1.223.abc |
$1$ |
$\F_{223}$ |
$223$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 28 x + 223 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$196$ |
$[196, 49392, 11086348, 2472958656, 551473381396, 122978508058224, 27424204926087004, 6115597644618701568, 1363778273769516816484, 304122555035168958475632]$ |
$196$ |
$[196, 49392, 11086348, 2472958656, 551473381396, 122978508058224, 27424204926087004, 6115597644618701568, 1363778273769516816484, 304122555035168958475632]$ |
$6$ |
$6$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
1.223.abb |
$1$ |
$\F_{223}$ |
$223$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 27 x + 223 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$197$ |
$[197, 49447, 11087948, 2472992811, 551473961567, 122978515802224, 27424204993986137, 6115597644462169203, 1363778273745421614884, 304122555034479555780607]$ |
$197$ |
$[197, 49447, 11087948, 2472992811, 551473961567, 122978515802224, 27424204993986137, 6115597644462169203, 1363778273745421614884, 304122555034479555780607]$ |
$1$ |
$1$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-163}) \) |
$C_2$ |
simple |
1.223.aba |
$1$ |
$\F_{223}$ |
$223$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 26 x + 223 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$198$ |
$[198, 49500, 11089386, 2473020000, 551474328438, 122978518393500, 27424204959992346, 6115597642669680000, 1363778273701826722278, 304122555033696169897500]$ |
$198$ |
$[198, 49500, 11089386, 2473020000, 551474328438, 122978518393500, 27424204959992346, 6115597642669680000, 1363778273701826722278, 304122555033696169897500]$ |
$8$ |
$8$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-6}) \) |
$C_2$ |
simple |
1.223.az |
$1$ |
$\F_{223}$ |
$223$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 25 x + 223 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$199$ |
$[199, 49551, 11090668, 2473040859, 551474517469, 122978517216624, 27424204866270523, 6115597640292275475, 1363778273660513276164, 304122555033187446078711]$ |
$199$ |
$[199, 49551, 11090668, 2473040859, 551474517469, 122978517216624, 27424204866270523, 6115597640292275475, 1363778273660513276164, 304122555033187446078711]$ |
$2$ |
$2$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-267}) \) |
$C_2$ |
simple |
1.223.ay |
$1$ |
$\F_{223}$ |
$223$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 24 x + 223 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$200$ |
$[200, 49600, 11091800, 2473056000, 551474561000, 122978513444800, 27424204745070200, 6115597638021504000, 1363778273632641537800, 304122555033060170968000]$ |
$200$ |
$[200, 49600, 11091800, 2473056000, 551474561000, 122978513444800, 27424204745070200, 6115597638021504000, 1363778273632641537800, 304122555033060170968000]$ |
$10$ |
$10$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-79}) \) |
$C_2$ |
simple |
1.223.ax |
$1$ |
$\F_{223}$ |
$223$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 23 x + 223 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$201$ |
$[201, 49647, 11092788, 2473066011, 551474488371, 122978508058224, 27424204620177909, 6115597636268307603, 1363778273622038878044, 304122555033270408899607]$ |
$201$ |
$[201, 49647, 11092788, 2473066011, 551474488371, 122978508058224, 27424204620177909, 6115597636268307603, 1363778273622038878044, 304122555033270408899607]$ |
$5$ |
$5$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
1.223.aw |
$1$ |
$\F_{223}$ |
$223$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 22 x + 223 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$202$ |
$[202, 49692, 11093638, 2473071456, 551474326042, 122978501861724, 27424204508243542, 6115597635230583168, 1363778273627793377194, 304122555033702159399132]$ |
$202$ |
$[202, 49692, 11093638, 2473071456, 551474326042, 122978501861724, 27424204508243542, 6115597635230583168, 1363778273627793377194, 304122555033702159399132]$ |
$4$ |
$4$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-102}) \) |
$C_2$ |
simple |
1.223.av |
$1$ |
$\F_{223}$ |
$223$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 21 x + 223 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$203$ |
$[203, 49735, 11094356, 2473072875, 551474097713, 122978495501680, 27424204419985751, 6115597634950405875, 1363778273646251938748, 304122555034220253198175]$ |
$203$ |
$[203, 49735, 11094356, 2473072875, 551474097713, 122978495501680, 27424204419985751, 6115597634950405875, 1363778273646251938748, 304122555034220253198175]$ |
$6$ |
$6$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-451}) \) |
$C_2$ |
simple |
1.223.au |
$1$ |
$\F_{223}$ |
$223$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 20 x + 223 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$204$ |
$[204, 49776, 11094948, 2473070784, 551473824444, 122978489482224, 27424204361281428, 6115597635361862400, 1363778273672513107884, 304122555034703247684336]$ |
$204$ |
$[204, 49776, 11094948, 2473070784, 551473824444, 122978489482224, 27424204361281428, 6115597635361862400, 1363778273672513107884, 304122555034703247684336]$ |
$8$ |
$8$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-123}) \) |
$C_2$ |
simple |
1.223.at |
$1$ |
$\F_{223}$ |
$223$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 19 x + 223 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$205$ |
$[205, 49815, 11095420, 2473065675, 551473524775, 122978484180720, 27424204334144305, 6115597636330401075, 1363778273701496439220, 304122555035061211594575]$ |
$205$ |
$[205, 49815, 11095420, 2473065675, 551473524775, 122978484180720, 27424204334144305, 6115597636330401075, 1363778273701496439220, 304122555035061211594575]$ |
$9$ |
$9$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-59}) \) |
$C_2$ |
simple |
1.223.as |
$1$ |
$\F_{223}$ |
$223$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 18 x + 223 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$206$ |
$[206, 49852, 11095778, 2473058016, 551473214846, 122978479862524, 27424204337597714, 6115597637684565888, 1363778273728662275054, 304122555035242499294332]$ |
$206$ |
$[206, 49852, 11095778, 2473058016, 551473214846, 122978479862524, 27424204337597714, 6115597637684565888, 1363778273728662275054, 304122555035242499294332]$ |
$4$ |
$4$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-142}) \) |
$C_2$ |
simple |
1.223.ar |
$1$ |
$\F_{223}$ |
$223$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 17 x + 223 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$207$ |
$[207, 49887, 11096028, 2473048251, 551472908517, 122978476695024, 27424204368446547, 6115597639240940883, 1363778273750448174804, 304122555035232903538407]$ |
$207$ |
$[207, 49887, 11096028, 2473048251, 551472908517, 122978476695024, 27424204368446547, 6115597639240940883, 1363778273750448174804, 304122555035232903538407]$ |
$5$ |
$5$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-67}) \) |
$C_2$ |
simple |
1.223.aq |
$1$ |
$\F_{223}$ |
$223$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 16 x + 223 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$208$ |
$[208, 49920, 11096176, 2473036800, 551472617488, 122978474760960, 27424204421953456, 6115597640823091200, 1363778273764480978768, 304122555035049938553600]$ |
$208$ |
$[208, 49920, 11096176, 2473036800, 551472617488, 122978474760960, 27424204421953456, 6115597640823091200, 1363778273764480978768, 304122555035049938553600]$ |
$20$ |
$20$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-159}) \) |
$C_2$ |
simple |
1.223.ap |
$1$ |
$\F_{223}$ |
$223$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 15 x + 223 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$209$ |
$[209, 49951, 11096228, 2473024059, 551472351419, 122978474071024, 27424204492424333, 6115597642275246675, 1363778273769616594604, 304122555034734438988711]$ |
$209$ |
$[209, 49951, 11096228, 2473024059, 551472351419, 122978474071024, 27424204492424333, 6115597642275246675, 1363778273769616594604, 304122555034734438988711]$ |
$4$ |
$4$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-667}) \) |
$C_2$ |
simple |
1.223.ao |
$1$ |
$\F_{223}$ |
$223$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 14 x + 223 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$210$ |
$[210, 49980, 11096190, 2473010400, 551472118050, 122978474575740, 27424204573708110, 6115597643471433600, 1363778273765853063090, 304122555034341161115900]$ |
$210$ |
$[210, 49980, 11096190, 2473010400, 551472118050, 122978474575740, 27424204573708110, 6115597643471433600, 1363778273765853063090, 304122555034341161115900]$ |
$12$ |
$12$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-174}) \) |
$C_2$ |
simple |
1.223.an |
$1$ |
$\F_{223}$ |
$223$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 13 x + 223 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$211$ |
$[211, 50007, 11096068, 2472996171, 551471923321, 122978476176624, 27424204659615919, 6115597644320719923, 1363778273754156290764, 304122555033929637009807]$ |
$211$ |
$[211, 50007, 11096068, 2472996171, 551471923321, 122978476176624, 27424204659615919, 6115597644320719923, 1363778273754156290764, 304122555033929637009807]$ |
$4$ |
$4$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-723}) \) |
$C_2$ |
simple |
1.223.am |
$1$ |
$\F_{223}$ |
$223$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 12 x + 223 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$212$ |
$[212, 50032, 11095868, 2472981696, 551471771492, 122978478736624, 27424204744264652, 6115597644769198848, 1363778273736232030964, 304122555033556156648432]$ |
$212$ |
$[212, 50032, 11095868, 2472981696, 551471771492, 122978478736624, 27424204744264652, 6115597644769198848, 1363778273736232030964, 304122555033556156648432]$ |
$8$ |
$8$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-187}) \) |
$C_2$ |
simple |
1.223.al |
$1$ |
$\F_{223}$ |
$223$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 11 x + 223 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$213$ |
$[213, 50055, 11095596, 2472967275, 551471665263, 122978482089840, 27424204822349961, 6115597644799295475, 1363778273714272251588, 304122555033267433343775]$ |
$213$ |
$[213, 50055, 11095596, 2472967275, 551471665263, 122978482089840, 27424204822349961, 6115597644799295475, 1363778273714272251588, 304122555033267433343775]$ |
$6$ |
$6$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-771}) \) |
$C_2$ |
simple |
1.223.ak |
$1$ |
$\F_{223}$ |
$223$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 10 x + 223 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$214$ |
$[214, 50076, 11095258, 2472953184, 551471605894, 122978486050524, 27424204889353738, 6115597644426940800, 1363778273690698947574, 304122555033096240991836]$ |
$214$ |
$[214, 50076, 11095258, 2472953184, 551471605894, 122978486050524, 27424204889353738, 6115597644426940800, 1363778273690698947574, 304122555033096240991836]$ |
$10$ |
$10$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-22}) \) |
$C_2$ |
simple |
1.223.aj |
$1$ |
$\F_{223}$ |
$223$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 9 x + 223 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$215$ |
$[215, 50095, 11094860, 2472939675, 551471593325, 122978490421360, 27424204941691115, 6115597643697117075, 1363778273667923738660, 304122555033059093701975]$ |
$215$ |
$[215, 50095, 11094860, 2472939675, 551471593325, 122978490421360, 27424204941691115, 6115597643697117075, 1363778273667923738660, 304122555033059093701975]$ |
$7$ |
$7$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-811}) \) |
$C_2$ |
simple |
1.223.ai |
$1$ |
$\F_{223}$ |
$223$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 8 x + 223 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$216$ |
$[216, 50112, 11094408, 2472926976, 551471626296, 122978495001024, 27424204976802024, 6115597642678238208, 1363778273648137238424, 304122555033155865796032]$ |
$216$ |
$[216, 50112, 11094408, 2472926976, 551471626296, 122978495001024, 27424204976802024, 6115597642678238208, 1363778273648137238424, 304122555033155865796032]$ |
$18$ |
$18$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-23}) \) |
$C_2$ |
simple |
1.223.ah |
$1$ |
$\F_{223}$ |
$223$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 7 x + 223 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$217$ |
$[217, 50127, 11093908, 2472915291, 551471702467, 122978499591024, 27424204993192357, 6115597641455788563, 1363778273633138188924, 304122555033371119329207]$ |
$217$ |
$[217, 50127, 11093908, 2472915291, 551471702467, 122978499591024, 27424204993192357, 6115597641455788563, 1363778273633138188924, 304122555033371119329207]$ |
$6$ |
$6$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-843}) \) |
$C_2$ |
simple |
1.223.ag |
$1$ |
$\F_{223}$ |
$223$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 6 x + 223 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$218$ |
$[218, 50140, 11093366, 2472904800, 551471818538, 122978504001820, 27424204990429766, 6115597640125603200, 1363778273624208726458, 304122555033676813548700]$ |
$218$ |
$[218, 50140, 11093366, 2472904800, 551471818538, 122978504001820, 27424204990429766, 6115597640125603200, 1363778273624208726458, 304122555033676813548700]$ |
$6$ |
$6$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-214}) \) |
$C_2$ |
simple |
1.223.af |
$1$ |
$\F_{223}$ |
$223$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 5 x + 223 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$219$ |
$[219, 50151, 11092788, 2472895659, 551471970369, 122978508058224, 27424204969099143, 6115597638787132275, 1363778273622038878044, 304122555034036012443711]$ |
$219$ |
$[219, 50151, 11092788, 2472895659, 551471970369, 122978508058224, 27424204969099143, 6115597638787132275, 1363778273622038878044, 304122555034036012443711]$ |
$7$ |
$7$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
1.223.ae |
$1$ |
$\F_{223}$ |
$223$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 4 x + 223 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$220$ |
$[220, 50160, 11092180, 2472888000, 551472153100, 122978511604080, 27424204930722820, 6115597637536992000, 1363778273626700485180, 304122555034407179122800]$ |
$220$ |
$[220, 50160, 11092180, 2472888000, 551472153100, 122978511604080, 27424204930722820, 6115597637536992000, 1363778273626700485180, 304122555034407179122800]$ |
$16$ |
$16$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-219}) \) |
$C_2$ |
simple |
1.223.ad |
$1$ |
$\F_{223}$ |
$223$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 3 x + 223 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$221$ |
$[221, 50167, 11091548, 2472881931, 551472361271, 122978514506224, 27424204877650529, 6115597636463064243, 1363778273637668211284, 304122555034748645553007]$ |
$221$ |
$[221, 50167, 11091548, 2472881931, 551472361271, 122978514506224, 27424204877650529, 6115597636463064243, 1363778273637668211284, 304122555034748645553007]$ |
$3$ |
$3$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-883}) \) |
$C_2$ |
simple |
1.223.ac |
$1$ |
$\F_{223}$ |
$223$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 2 x + 223 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$222$ |
$[222, 50172, 11090898, 2472877536, 551472588942, 122978516657724, 27424204812924162, 6115597635639366528, 1363778273653883111934, 304122555035022869580732]$ |
$222$ |
$[222, 50172, 11090898, 2472877536, 551472588942, 122978516657724, 27424204812924162, 6115597635639366528, 1363778273653883111934, 304122555035022869580732]$ |
$12$ |
$12$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-222}) \) |
$C_2$ |
simple |
1.223.ab |
$1$ |
$\F_{223}$ |
$223$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - x + 223 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$223$ |
$[223, 50175, 11090236, 2472874875, 551472829813, 122978517980400, 27424204740122371, 6115597635121873875, 1363778273673852432628, 304122555035200134498375]$ |
$223$ |
$[223, 50175, 11090236, 2472874875, 551472829813, 122978517980400, 27424204740122371, 6115597635121873875, 1363778273673852432628, 304122555035200134498375]$ |
$9$ |
$9$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-11}) \) |
$C_2$ |
simple |
1.223.a |
$1$ |
$\F_{223}$ |
$223$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 + 223 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$224$ |
$[224, 50176, 11089568, 2472873984, 551473077344, 122978518426624, 27424204663190048, 6115597634945433600, 1363778273695777847264, 304122555035261406094336]$ |
$224$ |
$[224, 50176, 11089568, 2472873984, 551473077344, 122978518426624, 27424204663190048, 6115597634945433600, 1363778273695777847264, 304122555035261406094336]$ |
$14$ |
$14$ |
$1$ |
$1$ |
$2$ |
\(\Q(\sqrt{-223}) \) |
$C_2$ |
simple |
1.223.b |
$1$ |
$\F_{223}$ |
$223$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + x + 223 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$225$ |
$[225, 50175, 11088900, 2472874875, 551473324875, 122978517980400, 27424204586257725, 6115597635121873875, 1363778273717703261900, 304122555035200134498375]$ |
$225$ |
$[225, 50175, 11088900, 2472874875, 551473324875, 122978517980400, 27424204586257725, 6115597635121873875, 1363778273717703261900, 304122555035200134498375]$ |
$9$ |
$9$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-11}) \) |
$C_2$ |
simple |
1.223.c |
$1$ |
$\F_{223}$ |
$223$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 2 x + 223 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$226$ |
$[226, 50172, 11088238, 2472877536, 551473565746, 122978516657724, 27424204513455934, 6115597635639366528, 1363778273737672582594, 304122555035022869580732]$ |
$226$ |
$[226, 50172, 11088238, 2472877536, 551473565746, 122978516657724, 27424204513455934, 6115597635639366528, 1363778273737672582594, 304122555035022869580732]$ |
$12$ |
$12$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-222}) \) |
$C_2$ |
simple |
1.223.d |
$1$ |
$\F_{223}$ |
$223$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 3 x + 223 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$227$ |
$[227, 50167, 11087588, 2472881931, 551473793417, 122978514506224, 27424204448729567, 6115597636463064243, 1363778273753887483244, 304122555034748645553007]$ |
$227$ |
$[227, 50167, 11087588, 2472881931, 551473793417, 122978514506224, 27424204448729567, 6115597636463064243, 1363778273753887483244, 304122555034748645553007]$ |
$3$ |
$3$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-883}) \) |
$C_2$ |
simple |
1.223.e |
$1$ |
$\F_{223}$ |
$223$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 4 x + 223 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$228$ |
$[228, 50160, 11086956, 2472888000, 551474001588, 122978511604080, 27424204395657276, 6115597637536992000, 1363778273764855209348, 304122555034407179122800]$ |
$228$ |
$[228, 50160, 11086956, 2472888000, 551474001588, 122978511604080, 27424204395657276, 6115597637536992000, 1363778273764855209348, 304122555034407179122800]$ |
$16$ |
$16$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-219}) \) |
$C_2$ |
simple |
1.223.f |
$1$ |
$\F_{223}$ |
$223$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 5 x + 223 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$229$ |
$[229, 50151, 11086348, 2472895659, 551474184319, 122978508058224, 27424204357280953, 6115597638787132275, 1363778273769516816484, 304122555034036012443711]$ |
$229$ |
$[229, 50151, 11086348, 2472895659, 551474184319, 122978508058224, 27424204357280953, 6115597638787132275, 1363778273769516816484, 304122555034036012443711]$ |
$7$ |
$7$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
1.223.g |
$1$ |
$\F_{223}$ |
$223$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 6 x + 223 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$230$ |
$[230, 50140, 11085770, 2472904800, 551474336150, 122978504001820, 27424204335950330, 6115597640125603200, 1363778273767346968070, 304122555033676813548700]$ |
$230$ |
$[230, 50140, 11085770, 2472904800, 551474336150, 122978504001820, 27424204335950330, 6115597640125603200, 1363778273767346968070, 304122555033676813548700]$ |
$6$ |
$6$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-214}) \) |
$C_2$ |
simple |
1.223.h |
$1$ |
$\F_{223}$ |
$223$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 7 x + 223 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$231$ |
$[231, 50127, 11085228, 2472915291, 551474452221, 122978499591024, 27424204333187739, 6115597641455788563, 1363778273758417505604, 304122555033371119329207]$ |
$231$ |
$[231, 50127, 11085228, 2472915291, 551474452221, 122978499591024, 27424204333187739, 6115597641455788563, 1363778273758417505604, 304122555033371119329207]$ |
$6$ |
$6$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-843}) \) |
$C_2$ |
simple |
1.223.i |
$1$ |
$\F_{223}$ |
$223$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 8 x + 223 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$232$ |
$[232, 50112, 11084728, 2472926976, 551474528392, 122978495001024, 27424204349578072, 6115597642678238208, 1363778273743418456104, 304122555033155865796032]$ |
$232$ |
$[232, 50112, 11084728, 2472926976, 551474528392, 122978495001024, 27424204349578072, 6115597642678238208, 1363778273743418456104, 304122555033155865796032]$ |
$18$ |
$18$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-23}) \) |
$C_2$ |
simple |
1.223.j |
$1$ |
$\F_{223}$ |
$223$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 9 x + 223 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$233$ |
$[233, 50095, 11084276, 2472939675, 551474561363, 122978490421360, 27424204384688981, 6115597643697117075, 1363778273723631955868, 304122555033059093701975]$ |
$233$ |
$[233, 50095, 11084276, 2472939675, 551474561363, 122978490421360, 27424204384688981, 6115597643697117075, 1363778273723631955868, 304122555033059093701975]$ |
$7$ |
$7$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-811}) \) |
$C_2$ |
simple |
1.223.k |
$1$ |
$\F_{223}$ |
$223$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 10 x + 223 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$234$ |
$[234, 50076, 11083878, 2472953184, 551474548794, 122978486050524, 27424204437026358, 6115597644426940800, 1363778273700856746954, 304122555033096240991836]$ |
$234$ |
$[234, 50076, 11083878, 2472953184, 551474548794, 122978486050524, 27424204437026358, 6115597644426940800, 1363778273700856746954, 304122555033096240991836]$ |
$10$ |
$10$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-22}) \) |
$C_2$ |
simple |
1.223.l |
$1$ |
$\F_{223}$ |
$223$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 11 x + 223 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$235$ |
$[235, 50055, 11083540, 2472967275, 551474489425, 122978482089840, 27424204504030135, 6115597644799295475, 1363778273677283442940, 304122555033267433343775]$ |
$235$ |
$[235, 50055, 11083540, 2472967275, 551474489425, 122978482089840, 27424204504030135, 6115597644799295475, 1363778273677283442940, 304122555033267433343775]$ |
$6$ |
$6$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-771}) \) |
$C_2$ |
simple |
1.223.m |
$1$ |
$\F_{223}$ |
$223$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 12 x + 223 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$236$ |
$[236, 50032, 11083268, 2472981696, 551474383196, 122978478736624, 27424204582115444, 6115597644769198848, 1363778273655323663564, 304122555033556156648432]$ |
$236$ |
$[236, 50032, 11083268, 2472981696, 551474383196, 122978478736624, 27424204582115444, 6115597644769198848, 1363778273655323663564, 304122555033556156648432]$ |
$8$ |
$8$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-187}) \) |
$C_2$ |
simple |
1.223.n |
$1$ |
$\F_{223}$ |
$223$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 13 x + 223 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$237$ |
$[237, 50007, 11083068, 2472996171, 551474231367, 122978476176624, 27424204666764177, 6115597644320719923, 1363778273637399403764, 304122555033929637009807]$ |
$237$ |
$[237, 50007, 11083068, 2472996171, 551474231367, 122978476176624, 27424204666764177, 6115597644320719923, 1363778273637399403764, 304122555033929637009807]$ |
$4$ |
$4$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-723}) \) |
$C_2$ |
simple |
1.223.o |
$1$ |
$\F_{223}$ |
$223$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 14 x + 223 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$238$ |
$[238, 49980, 11082946, 2473010400, 551474036638, 122978474575740, 27424204752671986, 6115597643471433600, 1363778273625702631438, 304122555034341161115900]$ |
$238$ |
$[238, 49980, 11082946, 2473010400, 551474036638, 122978474575740, 27424204752671986, 6115597643471433600, 1363778273625702631438, 304122555034341161115900]$ |
$12$ |
$12$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-174}) \) |
$C_2$ |
simple |
1.223.p |
$1$ |
$\F_{223}$ |
$223$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 15 x + 223 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$239$ |
$[239, 49951, 11082908, 2473024059, 551473803269, 122978474071024, 27424204833955763, 6115597642275246675, 1363778273621939099924, 304122555034734438988711]$ |
$239$ |
$[239, 49951, 11082908, 2473024059, 551473803269, 122978474071024, 27424204833955763, 6115597642275246675, 1363778273621939099924, 304122555034734438988711]$ |
$4$ |
$4$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-667}) \) |
$C_2$ |
simple |
1.223.q |
$1$ |
$\F_{223}$ |
$223$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 16 x + 223 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$240$ |
$[240, 49920, 11082960, 2473036800, 551473537200, 122978474760960, 27424204904426640, 6115597640823091200, 1363778273627074715760, 304122555035049938553600]$ |
$240$ |
$[240, 49920, 11082960, 2473036800, 551473537200, 122978474760960, 27424204904426640, 6115597640823091200, 1363778273627074715760, 304122555035049938553600]$ |
$20$ |
$20$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-159}) \) |
$C_2$ |
simple |
1.223.r |
$1$ |
$\F_{223}$ |
$223$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 17 x + 223 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$241$ |
$[241, 49887, 11083108, 2473048251, 551473246171, 122978476695024, 27424204957933549, 6115597639240940883, 1363778273641107519724, 304122555035232903538407]$ |
$241$ |
$[241, 49887, 11083108, 2473048251, 551473246171, 122978476695024, 27424204957933549, 6115597639240940883, 1363778273641107519724, 304122555035232903538407]$ |
$5$ |
$5$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-67}) \) |
$C_2$ |
simple |
1.223.s |
$1$ |
$\F_{223}$ |
$223$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 18 x + 223 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$242$ |
$[242, 49852, 11083358, 2473058016, 551472939842, 122978479862524, 27424204988782382, 6115597637684565888, 1363778273662893419474, 304122555035242499294332]$ |
$242$ |
$[242, 49852, 11083358, 2473058016, 551472939842, 122978479862524, 27424204988782382, 6115597637684565888, 1363778273662893419474, 304122555035242499294332]$ |
$4$ |
$4$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-142}) \) |
$C_2$ |
simple |
1.223.t |
$1$ |
$\F_{223}$ |
$223$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 19 x + 223 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$243$ |
$[243, 49815, 11083716, 2473065675, 551472629913, 122978484180720, 27424204992235791, 6115597636330401075, 1363778273690059255308, 304122555035061211594575]$ |
$243$ |
$[243, 49815, 11083716, 2473065675, 551472629913, 122978484180720, 27424204992235791, 6115597636330401075, 1363778273690059255308, 304122555035061211594575]$ |
$9$ |
$9$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-59}) \) |
$C_2$ |
simple |
1.223.u |
$1$ |
$\F_{223}$ |
$223$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 20 x + 223 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$244$ |
$[244, 49776, 11084188, 2473070784, 551472330244, 122978489482224, 27424204965098668, 6115597635361862400, 1363778273719042586644, 304122555034703247684336]$ |
$244$ |
$[244, 49776, 11084188, 2473070784, 551472330244, 122978489482224, 27424204965098668, 6115597635361862400, 1363778273719042586644, 304122555034703247684336]$ |
$8$ |
$8$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-123}) \) |
$C_2$ |
simple |