Learn more

Refine search


Results (1-50 of 60005 matches)

Next   displayed columns for results
Label Dimension Base field L-polynomial $p$-rank Number fields Galois groups Isogeny factors
1.16.ai $1$ $\F_{2^{4}}$ $( 1 - 4 x )^{2}$ $0$ \(\Q\) Trivial
1.16.ah $1$ $\F_{2^{4}}$ $1 - 7 x + 16 x^{2}$ $1$ \(\Q(\sqrt{-15}) \) $C_2$
1.16.af $1$ $\F_{2^{4}}$ $1 - 5 x + 16 x^{2}$ $1$ \(\Q(\sqrt{-39}) \) $C_2$
1.16.ae $1$ $\F_{2^{4}}$ $1 - 4 x + 16 x^{2}$ $0$ \(\Q(\sqrt{-3}) \) $C_2$
1.16.ad $1$ $\F_{2^{4}}$ $1 - 3 x + 16 x^{2}$ $1$ \(\Q(\sqrt{-55}) \) $C_2$
1.16.ab $1$ $\F_{2^{4}}$ $1 - x + 16 x^{2}$ $1$ \(\Q(\sqrt{-7}) \) $C_2$
1.16.a $1$ $\F_{2^{4}}$ $1 + 16 x^{2}$ $0$ \(\Q(\sqrt{-1}) \) $C_2$
1.16.b $1$ $\F_{2^{4}}$ $1 + x + 16 x^{2}$ $1$ \(\Q(\sqrt{-7}) \) $C_2$
1.16.d $1$ $\F_{2^{4}}$ $1 + 3 x + 16 x^{2}$ $1$ \(\Q(\sqrt{-55}) \) $C_2$
1.16.e $1$ $\F_{2^{4}}$ $1 + 4 x + 16 x^{2}$ $0$ \(\Q(\sqrt{-3}) \) $C_2$
1.16.f $1$ $\F_{2^{4}}$ $1 + 5 x + 16 x^{2}$ $1$ \(\Q(\sqrt{-39}) \) $C_2$
1.16.h $1$ $\F_{2^{4}}$ $1 + 7 x + 16 x^{2}$ $1$ \(\Q(\sqrt{-15}) \) $C_2$
1.16.i $1$ $\F_{2^{4}}$ $( 1 + 4 x )^{2}$ $0$ \(\Q\) Trivial
2.16.aq_ds $2$ $\F_{2^{4}}$ $( 1 - 4 x )^{4}$ $0$ \(\Q\) Trivial
2.16.ap_dk $2$ $\F_{2^{4}}$ $( 1 - 4 x )^{2}( 1 - 7 x + 16 x^{2} )$ $1$ \(\Q\), \(\Q(\sqrt{-15}) \) Trivial, $C_2$
2.16.ao_dd $2$ $\F_{2^{4}}$ $( 1 - 7 x + 16 x^{2} )^{2}$ $2$ \(\Q(\sqrt{-15}) \) $C_2$
2.16.an_cu $2$ $\F_{2^{4}}$ $( 1 - 4 x )^{2}( 1 - 5 x + 16 x^{2} )$ $1$ \(\Q\), \(\Q(\sqrt{-39}) \) Trivial, $C_2$
2.16.an_cv $2$ $\F_{2^{4}}$ $1 - 13 x + 73 x^{2} - 208 x^{3} + 256 x^{4}$ $2$ 4.0.5225.1 $D_{4}$
2.16.am_cm $2$ $\F_{2^{4}}$ $( 1 - 4 x )^{2}( 1 - 4 x + 16 x^{2} )$ $0$ \(\Q\), \(\Q(\sqrt{-3}) \) Trivial, $C_2$
2.16.am_cn $2$ $\F_{2^{4}}$ $1 - 12 x + 65 x^{2} - 192 x^{3} + 256 x^{4}$ $2$ 4.0.27792.2 $D_{4}$
2.16.am_cp $2$ $\F_{2^{4}}$ $( 1 - 7 x + 16 x^{2} )( 1 - 5 x + 16 x^{2} )$ $2$ \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{-39}) \) $C_2$, $C_2$
2.16.al_ce $2$ $\F_{2^{4}}$ $( 1 - 4 x )^{2}( 1 - 3 x + 16 x^{2} )$ $1$ \(\Q\), \(\Q(\sqrt{-55}) \) Trivial, $C_2$
2.16.al_cf $2$ $\F_{2^{4}}$ $1 - 11 x + 57 x^{2} - 176 x^{3} + 256 x^{4}$ $2$ 4.0.78057.3 $D_{4}$
2.16.al_ch $2$ $\F_{2^{4}}$ $1 - 11 x + 59 x^{2} - 176 x^{3} + 256 x^{4}$ $2$ 4.0.90753.1 $D_{4}$
2.16.al_ci $2$ $\F_{2^{4}}$ $( 1 - 7 x + 16 x^{2} )( 1 - 4 x + 16 x^{2} )$ $1$ \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{-3}) \) $C_2$, $C_2$
2.16.al_cj $2$ $\F_{2^{4}}$ $1 - 11 x + 61 x^{2} - 176 x^{3} + 256 x^{4}$ $2$ 4.0.22625.1 $D_{4}$
2.16.ak_bx $2$ $\F_{2^{4}}$ $1 - 10 x + 49 x^{2} - 160 x^{3} + 256 x^{4}$ $2$ 4.0.10304.1 $D_{4}$
2.16.ak_bz $2$ $\F_{2^{4}}$ $1 - 10 x + 51 x^{2} - 160 x^{3} + 256 x^{4}$ $2$ 4.0.281664.1 $D_{4}$
2.16.ak_cb $2$ $\F_{2^{4}}$ $( 1 - 7 x + 16 x^{2} )( 1 - 3 x + 16 x^{2} )$ $2$ \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{-55}) \) $C_2$, $C_2$
2.16.ak_cd $2$ $\F_{2^{4}}$ $1 - 10 x + 55 x^{2} - 160 x^{3} + 256 x^{4}$ $2$ 4.0.74816.1 $D_{4}$
2.16.ak_cf $2$ $\F_{2^{4}}$ $( 1 - 5 x + 16 x^{2} )^{2}$ $2$ \(\Q(\sqrt{-39}) \) $C_2$
2.16.aj_bo $2$ $\F_{2^{4}}$ $( 1 - 4 x )^{2}( 1 - x + 16 x^{2} )$ $1$ \(\Q\), \(\Q(\sqrt{-7}) \) Trivial, $C_2$
2.16.aj_bp $2$ $\F_{2^{4}}$ $1 - 9 x + 41 x^{2} - 144 x^{3} + 256 x^{4}$ $2$ 4.0.3625.1 $D_{4}$
2.16.aj_br $2$ $\F_{2^{4}}$ $1 - 9 x + 43 x^{2} - 144 x^{3} + 256 x^{4}$ $2$ \(\Q(\sqrt{-3}, \sqrt{37})\) $C_2^2$
2.16.aj_bs $2$ $\F_{2^{4}}$ $1 - 9 x + 44 x^{2} - 144 x^{3} + 256 x^{4}$ $1$ 4.0.40293.1 $D_{4}$
2.16.aj_bt $2$ $\F_{2^{4}}$ $1 - 9 x + 45 x^{2} - 144 x^{3} + 256 x^{4}$ $2$ 4.0.626545.2 $D_{4}$
2.16.aj_bv $2$ $\F_{2^{4}}$ $1 - 9 x + 47 x^{2} - 144 x^{3} + 256 x^{4}$ $2$ 4.0.466137.1 $D_{4}$
2.16.aj_bw $2$ $\F_{2^{4}}$ $1 - 9 x + 48 x^{2} - 144 x^{3} + 256 x^{4}$ $1$ 4.0.21964.1 $D_{4}$
2.16.aj_bx $2$ $\F_{2^{4}}$ $1 - 9 x + 49 x^{2} - 144 x^{3} + 256 x^{4}$ $2$ 4.0.2873.1 $D_{4}$
2.16.aj_bz $2$ $\F_{2^{4}}$ $1 - 9 x + 51 x^{2} - 144 x^{3} + 256 x^{4}$ $2$ 4.0.42625.1 $D_{4}$
2.16.aj_ca $2$ $\F_{2^{4}}$ $( 1 - 5 x + 16 x^{2} )( 1 - 4 x + 16 x^{2} )$ $1$ \(\Q(\sqrt{-39}) \), \(\Q(\sqrt{-3}) \) $C_2$, $C_2$
2.16.ai_bg $2$ $\F_{2^{4}}$ $( 1 - 4 x )^{2}( 1 + 16 x^{2} )$ $0$ \(\Q\), \(\Q(\sqrt{-1}) \) Trivial, $C_2$
2.16.ai_bh $2$ $\F_{2^{4}}$ $1 - 8 x + 33 x^{2} - 128 x^{3} + 256 x^{4}$ $2$ 4.0.464400.1 $D_{4}$
2.16.ai_bj $2$ $\F_{2^{4}}$ $1 - 8 x + 35 x^{2} - 128 x^{3} + 256 x^{4}$ $2$ 4.0.66417.2 $D_{4}$
2.16.ai_bl $2$ $\F_{2^{4}}$ $1 - 8 x + 37 x^{2} - 128 x^{3} + 256 x^{4}$ $2$ 4.0.1287440.3 $D_{4}$
2.16.ai_bn $2$ $\F_{2^{4}}$ $( 1 - 7 x + 16 x^{2} )( 1 - x + 16 x^{2} )$ $2$ \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{-7}) \) $C_2$, $C_2$
2.16.ai_bp $2$ $\F_{2^{4}}$ $1 - 8 x + 41 x^{2} - 128 x^{3} + 256 x^{4}$ $2$ 4.0.107408.1 $D_{4}$
2.16.ai_br $2$ $\F_{2^{4}}$ $1 - 8 x + 43 x^{2} - 128 x^{3} + 256 x^{4}$ $2$ 4.0.38225.1 $D_{4}$
2.16.ai_bt $2$ $\F_{2^{4}}$ $1 - 8 x + 45 x^{2} - 128 x^{3} + 256 x^{4}$ $2$ 4.0.263952.2 $D_{4}$
2.16.ai_bv $2$ $\F_{2^{4}}$ $( 1 - 5 x + 16 x^{2} )( 1 - 3 x + 16 x^{2} )$ $2$ \(\Q(\sqrt{-39}) \), \(\Q(\sqrt{-55}) \) $C_2$, $C_2$
Next   displayed columns for results