| Label |
Dimension |
Base field |
Base char. |
Simple |
Geom. simple |
Primitive |
Ordinary |
Almost ordinary |
Supersingular |
Princ. polarizable |
Jacobian |
L-polynomial |
Newton slopes |
Newton elevation |
$p$-rank |
$p$-corank |
Angle rank |
Angle corank |
$\mathbb{F}_q$ points on curve |
$\mathbb{F}_{q^k}$ points on curve |
$\mathbb{F}_q$ points on variety |
$\mathbb{F}_{q^k}$ points on variety |
Jacobians |
Hyperelliptic Jacobians |
Num. twists |
Max. twist degree |
End. degree |
Number fields |
Galois groups |
Isogeny factors |
| 2.2.ae_i |
$2$ |
$\F_{2}$ |
$2$ |
|
|
✓ |
|
|
✓ |
✓ |
|
$( 1 - 2 x + 2 x^{2} )^{2}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$-1$ |
$[-1, 5, 17, 33, 49, 65, 97, 193, 449, 1025]$ |
$1$ |
$[1, 25, 169, 625, 1681, 4225, 12769, 50625, 231361, 1050625]$ |
$0$ |
$0$ |
$11$ |
$24$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
1.2.ac 2 |
| 2.2.ac_c |
$2$ |
$\F_{2}$ |
$2$ |
✓ |
|
✓ |
|
|
✓ |
✓ |
✓ |
$1 - 2 x + 2 x^{2} - 4 x^{3} + 4 x^{4}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$1$ |
$[1, 5, 1, 9, 41, 65, 113, 289, 577, 1025]$ |
$1$ |
$[1, 13, 25, 169, 1321, 4225, 14449, 74529, 297025, 1047553]$ |
$1$ |
$1$ |
$11$ |
$24$ |
$12$ |
\(\Q(\zeta_{12})\) |
$C_2^2$ |
simple |
| 2.2.ac_e |
$2$ |
$\F_{2}$ |
$2$ |
|
|
✓ |
|
|
✓ |
✓ |
✓ |
$( 1 - 2 x + 2 x^{2} )( 1 + 2 x^{2} )$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$1$ |
$[1, 9, 13, 17, 41, 81, 113, 193, 481, 1089]$ |
$3$ |
$[3, 45, 117, 225, 1353, 5265, 14577, 50625, 246753, 1116225]$ |
$1$ |
$1$ |
$11$ |
$24$ |
$8$ |
\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-2}) \) |
$C_2$, $C_2$ |
1.2.ac $\times$ 1.2.a |
| 2.2.a_ae |
$2$ |
$\F_{2}$ |
$2$ |
✓ |
|
✓ |
|
|
✓ |
✓ |
|
$( 1 - 2 x^{2} )^{2}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$3$ |
$[3, -3, 9, 1, 33, 33, 129, 193, 513, 897]$ |
$1$ |
$[1, 1, 49, 81, 961, 2401, 16129, 50625, 261121, 923521]$ |
$0$ |
$0$ |
$11$ |
$24$ |
$2$ |
\(\Q(\sqrt{2}) \) |
$C_2$ |
simple |
| 2.2.a_ac |
$2$ |
$\F_{2}$ |
$2$ |
✓ |
|
✓ |
|
|
✓ |
✓ |
|
$1 - 2 x^{2} + 4 x^{4}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$3$ |
$[3, 1, 9, 25, 33, 97, 129, 289, 513, 961]$ |
$3$ |
$[3, 9, 81, 441, 993, 6561, 16257, 74529, 263169, 986049]$ |
$0$ |
$0$ |
$11$ |
$24$ |
$6$ |
\(\Q(\sqrt{-2}, \sqrt{-3})\) |
$C_2^2$ |
simple |
| 2.2.a_a |
$2$ |
$\F_{2}$ |
$2$ |
|
|
✓ |
|
|
✓ |
✓ |
✓ |
$( 1 - 2 x + 2 x^{2} )( 1 + 2 x + 2 x^{2} )$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$3$ |
$[3, 5, 9, 33, 33, 65, 129, 193, 513, 1025]$ |
$5$ |
$[5, 25, 65, 625, 1025, 4225, 16385, 50625, 262145, 1050625]$ |
$1$ |
$1$ |
$11$ |
$24$ |
$4$ |
\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-1}) \) |
$C_2$, $C_2$ |
1.2.ac $\times$ 1.2.c |
| 2.2.a_c |
$2$ |
$\F_{2}$ |
$2$ |
✓ |
|
✓ |
|
|
✓ |
✓ |
✓ |
$1 + 2 x^{2} + 4 x^{4}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$3$ |
$[3, 9, 9, 25, 33, 33, 129, 289, 513, 1089]$ |
$7$ |
$[7, 49, 49, 441, 1057, 2401, 16513, 74529, 261121, 1117249]$ |
$1$ |
$1$ |
$11$ |
$24$ |
$6$ |
\(\Q(\sqrt{2}, \sqrt{-3})\) |
$C_2^2$ |
simple |
| 2.2.a_e |
$2$ |
$\F_{2}$ |
$2$ |
|
|
✓ |
|
|
✓ |
✓ |
|
$( 1 + 2 x^{2} )^{2}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$3$ |
$[3, 13, 9, 1, 33, 97, 129, 193, 513, 1153]$ |
$9$ |
$[9, 81, 81, 81, 1089, 6561, 16641, 50625, 263169, 1185921]$ |
$0$ |
$0$ |
$11$ |
$24$ |
$2$ |
\(\Q(\sqrt{-2}) \) |
$C_2$ |
1.2.a 2 |
| 2.2.c_c |
$2$ |
$\F_{2}$ |
$2$ |
✓ |
|
✓ |
|
|
✓ |
✓ |
✓ |
$1 + 2 x + 2 x^{2} + 4 x^{3} + 4 x^{4}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$5$ |
$[5, 5, 17, 9, 25, 65, 145, 289, 449, 1025]$ |
$13$ |
$[13, 13, 169, 169, 793, 4225, 18577, 74529, 231361, 1047553]$ |
$1$ |
$1$ |
$11$ |
$24$ |
$12$ |
\(\Q(\zeta_{12})\) |
$C_2^2$ |
simple |
| 2.2.c_e |
$2$ |
$\F_{2}$ |
$2$ |
|
|
✓ |
|
|
✓ |
✓ |
✓ |
$( 1 + 2 x^{2} )( 1 + 2 x + 2 x^{2} )$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$5$ |
$[5, 9, 5, 17, 25, 81, 145, 193, 545, 1089]$ |
$15$ |
$[15, 45, 45, 225, 825, 5265, 18705, 50625, 279585, 1116225]$ |
$1$ |
$1$ |
$11$ |
$24$ |
$8$ |
\(\Q(\sqrt{-2}) \), \(\Q(\sqrt{-1}) \) |
$C_2$, $C_2$ |
1.2.a $\times$ 1.2.c |
| 2.2.e_i |
$2$ |
$\F_{2}$ |
$2$ |
|
|
✓ |
|
|
✓ |
✓ |
|
$( 1 + 2 x + 2 x^{2} )^{2}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$7$ |
$[7, 5, 1, 33, 17, 65, 161, 193, 577, 1025]$ |
$25$ |
$[25, 25, 25, 625, 625, 4225, 21025, 50625, 297025, 1050625]$ |
$0$ |
$0$ |
$11$ |
$24$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
1.2.c 2 |
| 2.3.ag_p |
$2$ |
$\F_{3}$ |
$3$ |
|
|
✓ |
|
|
✓ |
✓ |
|
$( 1 - 3 x + 3 x^{2} )^{2}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$-2$ |
$[-2, 4, 28, 100, 298, 838, 2350, 6724, 19684, 58564]$ |
$1$ |
$[1, 49, 784, 8281, 73441, 614656, 5148361, 44129449, 387459856, 3458263249]$ |
$0$ |
$0$ |
$9$ |
$24$ |
$6$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
1.3.ad 2 |
| 2.3.ae_i |
$2$ |
$\F_{3}$ |
$3$ |
✓ |
|
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 4 x + 8 x^{2} - 12 x^{3} + 9 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$0$ |
$[0, 10, 24, 54, 200, 730, 2240, 6494, 19392, 59050]$ |
$2$ |
$[2, 68, 626, 4624, 49282, 532100, 4898098, 42614784, 381715394, 3486898628]$ |
$1$ |
$1$ |
$8$ |
$24$ |
$4$ |
\(\Q(\zeta_{8})\) |
$C_2^2$ |
simple |
| 2.3.ad_g |
$2$ |
$\F_{3}$ |
$3$ |
|
|
✓ |
|
|
✓ |
✓ |
✓ |
$( 1 - 3 x + 3 x^{2} )( 1 + 3 x^{2} )$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$1$ |
$[1, 13, 28, 73, 271, 838, 2269, 6481, 19684, 59293]$ |
$4$ |
$[4, 112, 784, 5824, 66124, 614656, 4964572, 42515200, 387459856, 3501133552]$ |
$1$ |
$1$ |
$9$ |
$24$ |
$6$ |
\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-3}) \) |
$C_2$, $C_2$ |
1.3.ad $\times$ 1.3.a |
| 2.3.ac_b |
$2$ |
$\F_{3}$ |
$3$ |
✓ |
|
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 2 x + x^{2} - 6 x^{3} + 9 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$2$ |
$[2, 8, 8, 68, 242, 638, 2102, 6596, 19304, 58568]$ |
$3$ |
$[3, 57, 324, 5529, 58323, 467856, 4600011, 43264425, 380016036, 3458495577]$ |
$1$ |
$1$ |
$8$ |
$24$ |
$3$ |
\(\Q(\sqrt{-2}, \sqrt{-3})\) |
$C_2^2$ |
simple |
| 2.3.a_ad |
$2$ |
$\F_{3}$ |
$3$ |
|
|
✓ |
|
|
✓ |
✓ |
|
$( 1 - 3 x + 3 x^{2} )( 1 + 3 x + 3 x^{2} )$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$4$ |
$[4, 4, 28, 100, 244, 838, 2188, 6724, 19684, 58564]$ |
$7$ |
$[7, 49, 784, 8281, 58807, 614656, 4780783, 44129449, 387459856, 3458263249]$ |
$0$ |
$0$ |
$9$ |
$24$ |
$6$ |
\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-3}) \) |
$C_2$, $C_2$ |
1.3.ad $\times$ 1.3.d |
| 2.3.a_a |
$2$ |
$\F_{3}$ |
$3$ |
✓ |
|
✓ |
|
|
✓ |
✓ |
✓ |
$1 + 9 x^{4}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$4$ |
$[4, 10, 28, 118, 244, 730, 2188, 6238, 19684, 59050]$ |
$10$ |
$[10, 100, 730, 10000, 59050, 532900, 4782970, 40960000, 387420490, 3486902500]$ |
$2$ |
$2$ |
$9$ |
$24$ |
$4$ |
\(\Q(i, \sqrt{6})\) |
$C_2^2$ |
simple |
| 2.3.a_d |
$2$ |
$\F_{3}$ |
$3$ |
✓ |
|
✓ |
|
|
✓ |
✓ |
✓ |
$1 + 3 x^{2} + 9 x^{4}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$4$ |
$[4, 16, 28, 100, 244, 622, 2188, 6724, 19684, 59536]$ |
$13$ |
$[13, 169, 676, 8281, 59293, 456976, 4785157, 44129449, 387381124, 3515659849]$ |
$2$ |
$2$ |
$9$ |
$24$ |
$6$ |
\(\Q(\zeta_{12})\) |
$C_2^2$ |
simple |
| 2.3.c_b |
$2$ |
$\F_{3}$ |
$3$ |
✓ |
|
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 2 x + x^{2} + 6 x^{3} + 9 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$6$ |
$[6, 8, 48, 68, 246, 638, 2274, 6596, 20064, 58568]$ |
$19$ |
$[19, 57, 1444, 5529, 59299, 467856, 4976347, 43264425, 394975876, 3458495577]$ |
$1$ |
$1$ |
$8$ |
$24$ |
$3$ |
\(\Q(\sqrt{-2}, \sqrt{-3})\) |
$C_2^2$ |
simple |
| 2.3.d_g |
$2$ |
$\F_{3}$ |
$3$ |
|
|
✓ |
|
|
✓ |
✓ |
✓ |
$( 1 + 3 x^{2} )( 1 + 3 x + 3 x^{2} )$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$7$ |
$[7, 13, 28, 73, 217, 838, 2107, 6481, 19684, 59293]$ |
$28$ |
$[28, 112, 784, 5824, 52948, 614656, 4610116, 42515200, 387459856, 3501133552]$ |
$1$ |
$1$ |
$9$ |
$24$ |
$6$ |
\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-3}) \) |
$C_2$, $C_2$ |
1.3.a $\times$ 1.3.d |
| 2.3.e_i |
$2$ |
$\F_{3}$ |
$3$ |
✓ |
|
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 4 x + 8 x^{2} + 12 x^{3} + 9 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$8$ |
$[8, 10, 32, 54, 288, 730, 2136, 6494, 19976, 59050]$ |
$34$ |
$[34, 68, 850, 4624, 70754, 532100, 4670546, 42614784, 393210850, 3486898628]$ |
$1$ |
$1$ |
$8$ |
$24$ |
$4$ |
\(\Q(\zeta_{8})\) |
$C_2^2$ |
simple |
| 2.3.g_p |
$2$ |
$\F_{3}$ |
$3$ |
|
|
✓ |
|
|
✓ |
✓ |
|
$( 1 + 3 x + 3 x^{2} )^{2}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$10$ |
$[10, 4, 28, 100, 190, 838, 2026, 6724, 19684, 58564]$ |
$49$ |
$[49, 49, 784, 8281, 47089, 614656, 4439449, 44129449, 387459856, 3458263249]$ |
$0$ |
$0$ |
$9$ |
$24$ |
$6$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
1.3.d 2 |
| 2.5.ag_r |
$2$ |
$\F_{5}$ |
$5$ |
✓ |
|
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 6 x + 17 x^{2} - 30 x^{3} + 25 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$0$ |
$[0, 24, 126, 580, 2940, 15342, 78204, 391492, 1953126, 9760344]$ |
$7$ |
$[7, 553, 15484, 363321, 9198847, 239754256, 6109689607, 152926532073, 3814701058588, 95315867737993]$ |
$1$ |
$1$ |
$6$ |
$24$ |
$6$ |
\(\Q(\sqrt{2}, \sqrt{-3})\) |
$C_2^2$ |
simple |
| 2.5.ae_i |
$2$ |
$\F_{5}$ |
$5$ |
✓ |
|
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 4 x + 8 x^{2} - 20 x^{3} + 25 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$2$ |
$[2, 26, 98, 534, 3082, 15626, 77338, 388894, 1953602, 9765626]$ |
$10$ |
$[10, 580, 12490, 336400, 9629050, 244129540, 6042262810, 151912857600, 3815627066890, 95367440008900]$ |
$1$ |
$1$ |
$6$ |
$24$ |
$4$ |
\(\Q(i, \sqrt{6})\) |
$C_2^2$ |
simple |
| 2.5.ae_l |
$2$ |
$\F_{5}$ |
$5$ |
✓ |
|
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 4 x + 11 x^{2} - 20 x^{3} + 25 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$2$ |
$[2, 32, 134, 612, 3202, 16094, 78682, 389572, 1950254, 9765152]$ |
$13$ |
$[13, 793, 16900, 381433, 10005853, 251539600, 6147184693, 152176891113, 3809093856100, 95362793192953]$ |
$2$ |
$2$ |
$16$ |
$24$ |
$3$ |
\(\Q(\zeta_{12})\) |
$C_2^2$ |
simple |
| 2.5.ac_ab |
$2$ |
$\F_{5}$ |
$5$ |
✓ |
|
✓ |
✓ |
|
|
|
|
$1 - 2 x - x^{2} - 10 x^{3} + 25 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$4$ |
$[4, 20, 82, 612, 3044, 15158, 78068, 389572, 1948330, 9766100]$ |
$13$ |
$[13, 481, 10816, 381433, 9512893, 236913664, 6098909557, 152176891113, 3805339729984, 95372051006401]$ |
$0$ |
$0$ |
$16$ |
$24$ |
$3$ |
\(\Q(\zeta_{12})\) |
$C_2^2$ |
simple |
| 2.5.a_ai |
$2$ |
$\F_{5}$ |
$5$ |
✓ |
|
✓ |
✓ |
|
|
✓ |
|
$1 - 8 x^{2} + 25 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$6$ |
$[6, 10, 126, 598, 3126, 15802, 78126, 392734, 1953126, 9778090]$ |
$18$ |
$[18, 324, 15714, 374544, 9771858, 246929796, 6103547874, 153413222400, 3814693822098, 95489208772164]$ |
$0$ |
$0$ |
$16$ |
$24$ |
$2$ |
\(\Q(\zeta_{8})\) |
$C_2^2$ |
simple |
| 2.5.a_i |
$2$ |
$\F_{5}$ |
$5$ |
✓ |
|
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 8 x^{2} + 25 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$6$ |
$[6, 42, 126, 598, 3126, 15450, 78126, 392734, 1953126, 9753162]$ |
$34$ |
$[34, 1156, 15538, 374544, 9759394, 241429444, 6103483378, 153413222400, 3814700709154, 95245771247236]$ |
$1$ |
$1$ |
$16$ |
$24$ |
$2$ |
\(\Q(\zeta_{8})\) |
$C_2^2$ |
simple |
| 2.5.c_ab |
$2$ |
$\F_{5}$ |
$5$ |
✓ |
|
✓ |
✓ |
|
|
|
|
$1 + 2 x - x^{2} + 10 x^{3} + 25 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$8$ |
$[8, 20, 170, 612, 3208, 15158, 78184, 389572, 1957922, 9766100]$ |
$37$ |
$[37, 481, 21904, 381433, 10025557, 236913664, 6107972173, 152176891113, 3824074114576, 95372051006401]$ |
$0$ |
$0$ |
$16$ |
$24$ |
$3$ |
\(\Q(\zeta_{12})\) |
$C_2^2$ |
simple |
| 2.5.e_i |
$2$ |
$\F_{5}$ |
$5$ |
✓ |
|
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 4 x + 8 x^{2} + 20 x^{3} + 25 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$10$ |
$[10, 26, 154, 534, 3170, 15626, 78914, 388894, 1952650, 9765626]$ |
$58$ |
$[58, 580, 19546, 336400, 9904138, 244129540, 6165389386, 151912857600, 3813767690938, 95367440008900]$ |
$1$ |
$1$ |
$6$ |
$24$ |
$4$ |
\(\Q(i, \sqrt{6})\) |
$C_2^2$ |
simple |
| 2.5.e_l |
$2$ |
$\F_{5}$ |
$5$ |
✓ |
|
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 4 x + 11 x^{2} + 20 x^{3} + 25 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$10$ |
$[10, 32, 118, 612, 3050, 16094, 77570, 389572, 1955998, 9765152]$ |
$61$ |
$[61, 793, 14884, 381433, 9530701, 251539600, 6060308581, 152176891113, 3820312611844, 95362793192953]$ |
$2$ |
$2$ |
$16$ |
$24$ |
$3$ |
\(\Q(\zeta_{12})\) |
$C_2^2$ |
simple |
| 2.5.g_r |
$2$ |
$\F_{5}$ |
$5$ |
✓ |
|
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 6 x + 17 x^{2} + 30 x^{3} + 25 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$12$ |
$[12, 24, 126, 580, 3312, 15342, 78048, 391492, 1953126, 9760344]$ |
$79$ |
$[79, 553, 15484, 363321, 10361719, 239754256, 6097501951, 152926532073, 3814701058588, 95315867737993]$ |
$1$ |
$1$ |
$6$ |
$24$ |
$6$ |
\(\Q(\sqrt{2}, \sqrt{-3})\) |
$C_2^2$ |
simple |
| 2.7.a_ah |
$2$ |
$\F_{7}$ |
$7$ |
✓ |
|
✓ |
|
|
✓ |
|
|
$1 - 7 x^{2} + 49 x^{4}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$8$ |
$[8, 36, 344, 2500, 16808, 119022, 823544, 5769604, 40353608, 282441636]$ |
$43$ |
$[43, 1849, 118336, 6007401, 282458443, 14003408896, 678222249307, 33260630443209, 1628413678617664, 79782772021984249]$ |
$0$ |
$0$ |
$5$ |
$24$ |
$6$ |
\(\Q(\sqrt{-3}, \sqrt{-7})\) |
$C_2^2$ |
simple |
| 2.7.a_a |
$2$ |
$\F_{7}$ |
$7$ |
✓ |
|
✓ |
|
|
✓ |
✓ |
✓ |
$1 + 49 x^{4}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$8$ |
$[8, 50, 344, 2598, 16808, 117650, 823544, 5755198, 40353608, 282475250]$ |
$50$ |
$[50, 2500, 117650, 6250000, 282475250, 13841522500, 678223072850, 33177600000000, 1628413597910450, 79792266862562500]$ |
$9$ |
$9$ |
$5$ |
$24$ |
$4$ |
\(\Q(i, \sqrt{14})\) |
$C_2^2$ |
simple |
| 2.7.a_h |
$2$ |
$\F_{7}$ |
$7$ |
✓ |
|
✓ |
|
|
✓ |
✓ |
✓ |
$1 + 7 x^{2} + 49 x^{4}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$8$ |
$[8, 64, 344, 2500, 16808, 116278, 823544, 5769604, 40353608, 282508864]$ |
$57$ |
$[57, 3249, 116964, 6007401, 282492057, 13680577296, 678223896393, 33260630443209, 1628413517203236, 79801762268091249]$ |
$6$ |
$6$ |
$5$ |
$24$ |
$6$ |
\(\Q(\sqrt{-3}, \sqrt{7})\) |
$C_2^2$ |
simple |
| 2.8.ai_bg |
$2$ |
$\F_{2^{3}}$ |
$2$ |
|
|
|
|
|
✓ |
✓ |
✓ |
$( 1 - 4 x + 8 x^{2} )^{2}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$1$ |
$[1, 65, 577, 4353, 33281, 262145, 2093057, 16760833, 134184961, 1073741825]$ |
$25$ |
$[25, 4225, 297025, 17850625, 1090650625, 68720001025, 4389464961025, 281200199450625, 18010000999809025, 1152921506754330625]$ |
$1$ |
$1$ |
$11$ |
$24$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
1.8.ae 2 |
| 2.8.ae_i |
$2$ |
$\F_{2^{3}}$ |
$2$ |
✓ |
|
✓ |
|
|
✓ |
✓ |
✓ |
$1 - 4 x + 8 x^{2} - 32 x^{3} + 64 x^{4}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$5$ |
$[5, 65, 449, 3969, 33025, 262145, 2095105, 16785409, 134250497, 1073741825]$ |
$37$ |
$[37, 4033, 231361, 16265089, 1082163457, 68720001025, 4393753638913, 281612466003969, 18018797092896769, 1152921503533105153]$ |
$3$ |
$3$ |
$11$ |
$24$ |
$12$ |
\(\Q(\zeta_{12})\) |
$C_2^2$ |
simple |
| 2.8.ae_q |
$2$ |
$\F_{2^{3}}$ |
$2$ |
|
|
|
|
|
✓ |
✓ |
✓ |
$( 1 - 4 x + 8 x^{2} )( 1 + 8 x^{2} )$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$5$ |
$[5, 81, 545, 4097, 33025, 263169, 2095105, 16760833, 134201345, 1073807361]$ |
$45$ |
$[45, 5265, 279585, 16769025, 1082196225, 68988437505, 4393755736065, 281200199450625, 18012199754645505, 1152991875498573825]$ |
$4$ |
$4$ |
$11$ |
$24$ |
$8$ |
\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-2}) \) |
$C_2$, $C_2$ |
1.8.ae $\times$ 1.8.a |
| 2.8.a_aq |
$2$ |
$\F_{2^{3}}$ |
$2$ |
✓ |
|
|
|
|
✓ |
✓ |
✓ |
$( 1 - 8 x^{2} )^{2}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$9$ |
$[9, 33, 513, 3841, 32769, 260097, 2097153, 16760833, 134217729, 1073610753]$ |
$49$ |
$[49, 2401, 261121, 15752961, 1073676289, 68184176641, 4398042316801, 281200199450625, 18014398241046529, 1152780773560811521]$ |
$1$ |
$1$ |
$11$ |
$24$ |
$2$ |
\(\Q(\sqrt{2}) \) |
$C_2$ |
simple |
| 2.8.a_ai |
$2$ |
$\F_{2^{3}}$ |
$2$ |
✓ |
|
✓ |
|
|
✓ |
✓ |
|
$1 - 8 x^{2} + 64 x^{4}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$9$ |
$[9, 49, 513, 4225, 32769, 264193, 2097153, 16785409, 134217729, 1073676289]$ |
$57$ |
$[57, 3249, 263169, 17313921, 1073709057, 69257922561, 4398044413953, 281612466003969, 18014398777917441, 1152851139083829249]$ |
$0$ |
$0$ |
$11$ |
$24$ |
$6$ |
\(\Q(\sqrt{-2}, \sqrt{-3})\) |
$C_2^2$ |
simple |
| 2.8.a_a |
$2$ |
$\F_{2^{3}}$ |
$2$ |
|
|
|
|
|
✓ |
✓ |
✓ |
$( 1 - 4 x + 8 x^{2} )( 1 + 4 x + 8 x^{2} )$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$9$ |
$[9, 65, 513, 4353, 32769, 262145, 2097153, 16760833, 134217729, 1073741825]$ |
$65$ |
$[65, 4225, 262145, 17850625, 1073741825, 68720001025, 4398046511105, 281200199450625, 18014398509481985, 1152921506754330625]$ |
$7$ |
$7$ |
$11$ |
$24$ |
$4$ |
\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-1}) \) |
$C_2$, $C_2$ |
1.8.ae $\times$ 1.8.e |
| 2.8.a_i |
$2$ |
$\F_{2^{3}}$ |
$2$ |
✓ |
|
✓ |
|
|
✓ |
✓ |
✓ |
$1 + 8 x^{2} + 64 x^{4}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$9$ |
$[9, 81, 513, 4225, 32769, 260097, 2097153, 16785409, 134217729, 1073807361]$ |
$73$ |
$[73, 5329, 261121, 17313921, 1073774593, 68184176641, 4398048608257, 281612466003969, 18014398241046529, 1152991876572315649]$ |
$3$ |
$3$ |
$11$ |
$24$ |
$6$ |
\(\Q(\sqrt{2}, \sqrt{-3})\) |
$C_2^2$ |
simple |
| 2.8.a_q |
$2$ |
$\F_{2^{3}}$ |
$2$ |
|
|
|
|
|
✓ |
✓ |
✓ |
$( 1 + 8 x^{2} )^{2}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$9$ |
$[9, 97, 513, 3841, 32769, 264193, 2097153, 16760833, 134217729, 1073872897]$ |
$81$ |
$[81, 6561, 263169, 15752961, 1073807361, 69257922561, 4398050705409, 281200199450625, 18014398777917441, 1153062248537784321]$ |
$3$ |
$3$ |
$11$ |
$24$ |
$2$ |
\(\Q(\sqrt{-2}) \) |
$C_2$ |
1.8.a 2 |
| 2.8.e_i |
$2$ |
$\F_{2^{3}}$ |
$2$ |
✓ |
|
✓ |
|
|
✓ |
✓ |
✓ |
$1 + 4 x + 8 x^{2} + 32 x^{3} + 64 x^{4}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$13$ |
$[13, 65, 577, 3969, 32513, 262145, 2099201, 16785409, 134184961, 1073741825]$ |
$109$ |
$[109, 4033, 297025, 16265089, 1065385729, 68720001025, 4402343577601, 281612466003969, 18010000999809025, 1152921503533105153]$ |
$3$ |
$3$ |
$11$ |
$24$ |
$12$ |
\(\Q(\zeta_{12})\) |
$C_2^2$ |
simple |
| 2.8.e_q |
$2$ |
$\F_{2^{3}}$ |
$2$ |
|
|
|
|
|
✓ |
✓ |
✓ |
$( 1 + 8 x^{2} )( 1 + 4 x + 8 x^{2} )$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$13$ |
$[13, 81, 481, 4097, 32513, 263169, 2099201, 16760833, 134234113, 1073807361]$ |
$117$ |
$[117, 5265, 246753, 16769025, 1065418497, 68988437505, 4402345674753, 281200199450625, 18016597801189377, 1152991875498573825]$ |
$4$ |
$4$ |
$11$ |
$24$ |
$8$ |
\(\Q(\sqrt{-2}) \), \(\Q(\sqrt{-1}) \) |
$C_2$, $C_2$ |
1.8.a $\times$ 1.8.e |
| 2.8.i_bg |
$2$ |
$\F_{2^{3}}$ |
$2$ |
|
|
|
|
|
✓ |
✓ |
✓ |
$( 1 + 4 x + 8 x^{2} )^{2}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$17$ |
$[17, 65, 449, 4353, 32257, 262145, 2101249, 16760833, 134250497, 1073741825]$ |
$169$ |
$[169, 4225, 231361, 17850625, 1057095169, 68720001025, 4406644838401, 281200199450625, 18018797092896769, 1152921506754330625]$ |
$1$ |
$1$ |
$11$ |
$24$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
1.8.e 2 |
| 2.9.ai_bg |
$2$ |
$\F_{3^{2}}$ |
$3$ |
✓ |
|
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 8 x + 32 x^{2} - 72 x^{3} + 81 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$2$ |
$[2, 82, 770, 6630, 58962, 531442, 4787442, 43070654, 387475970, 3486784402]$ |
$34$ |
$[34, 6596, 561442, 43507216, 3481591874, 282428906564, 22898191896194, 1854050612281344, 150116130924799522, 12157665465130939076]$ |
$3$ |
$3$ |
$8$ |
$24$ |
$4$ |
\(\Q(\zeta_{8})\) |
$C_2^2$ |
simple |
| 2.9.ac_af |
$2$ |
$\F_{3^{2}}$ |
$3$ |
✓ |
|
|
✓ |
|
|
✓ |
✓ |
$1 - 2 x - 5 x^{2} - 18 x^{3} + 81 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$8$ |
$[8, 68, 638, 6596, 58568, 530126, 4785992, 43034756, 387427022, 3486898628]$ |
$57$ |
$[57, 5529, 467856, 43264425, 3458495577, 281731654656, 22891250939817, 1852505191914825, 150097166713147536, 12158063750052826329]$ |
$3$ |
$3$ |
$8$ |
$24$ |
$3$ |
\(\Q(\sqrt{-2}, \sqrt{-3})\) |
$C_2^2$ |
simple |
| 2.9.c_af |
$2$ |
$\F_{3^{2}}$ |
$3$ |
✓ |
|
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 2 x - 5 x^{2} + 18 x^{3} + 81 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$12$ |
$[12, 68, 822, 6596, 59532, 530126, 4779948, 43034756, 387413958, 3486898628]$ |
$97$ |
$[97, 5529, 602176, 43264425, 3515419777, 281731654656, 22862342669137, 1852505191914825, 150092105451866176, 12158063750052826329]$ |
$3$ |
$3$ |
$8$ |
$24$ |
$3$ |
\(\Q(\sqrt{-2}, \sqrt{-3})\) |
$C_2^2$ |
simple |
| 2.9.i_bg |
$2$ |
$\F_{3^{2}}$ |
$3$ |
✓ |
|
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 8 x + 32 x^{2} + 72 x^{3} + 81 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$18$ |
$[18, 82, 690, 6630, 59138, 531442, 4778498, 43070654, 387365010, 3486784402]$ |
$194$ |
$[194, 6596, 503042, 43507216, 3491984674, 282428906564, 22855413012514, 1854050612281344, 150073142747229122, 12157665465130939076]$ |
$3$ |
$3$ |
$8$ |
$24$ |
$4$ |
\(\Q(\zeta_{8})\) |
$C_2^2$ |
simple |