| Label |
Dimension |
Base field |
Base char. |
Simple |
Geom. simple |
Primitive |
Ordinary |
Almost ordinary |
Supersingular |
Princ. polarizable |
Jacobian |
L-polynomial |
Newton slopes |
Newton elevation |
$p$-rank |
$p$-corank |
Angle rank |
Angle corank |
$\mathbb{F}_q$ points on curve |
$\mathbb{F}_{q^k}$ points on curve |
$\mathbb{F}_q$ points on variety |
$\mathbb{F}_{q^k}$ points on variety |
Jacobians |
Hyperelliptic Jacobians |
Num. twists |
Max. twist degree |
End. degree |
Number fields |
Galois groups |
Isogeny factors |
| 1.4.ac |
$1$ |
$\F_{2^{2}}$ |
$2$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 - 2 x + 4 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$3$ |
$[3, 21, 81, 273, 993, 3969, 16257, 65793, 263169, 1049601]$ |
$3$ |
$[3, 21, 81, 273, 993, 3969, 16257, 65793, 263169, 1049601]$ |
$2$ |
$0$ |
$5$ |
$12$ |
$3$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
| 1.4.a |
$1$ |
$\F_{2^{2}}$ |
$2$ |
✓ |
✓ |
|
|
✓ |
✓ |
✓ |
✓ |
$1 + 4 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$5$ |
$[5, 25, 65, 225, 1025, 4225, 16385, 65025, 262145, 1050625]$ |
$5$ |
$[5, 25, 65, 225, 1025, 4225, 16385, 65025, 262145, 1050625]$ |
$1$ |
$0$ |
$5$ |
$12$ |
$2$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
simple |
| 1.4.c |
$1$ |
$\F_{2^{2}}$ |
$2$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 + 2 x + 4 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$7$ |
$[7, 21, 49, 273, 1057, 3969, 16513, 65793, 261121, 1049601]$ |
$7$ |
$[7, 21, 49, 273, 1057, 3969, 16513, 65793, 261121, 1049601]$ |
$2$ |
$0$ |
$5$ |
$12$ |
$3$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
| 1.9.ad |
$1$ |
$\F_{3^{2}}$ |
$3$ |
✓ |
✓ |
|
|
✓ |
✓ |
✓ |
✓ |
$1 - 3 x + 9 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$7$ |
$[7, 91, 784, 6643, 58807, 529984, 4780783, 43053283, 387459856, 3486843451]$ |
$7$ |
$[7, 91, 784, 6643, 58807, 529984, 4780783, 43053283, 387459856, 3486843451]$ |
$1$ |
$0$ |
$5$ |
$12$ |
$3$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
| 1.9.a |
$1$ |
$\F_{3^{2}}$ |
$3$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 + 9 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$10$ |
$[10, 100, 730, 6400, 59050, 532900, 4782970, 43033600, 387420490, 3486902500]$ |
$10$ |
$[10, 100, 730, 6400, 59050, 532900, 4782970, 43033600, 387420490, 3486902500]$ |
$2$ |
$0$ |
$5$ |
$12$ |
$2$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
simple |
| 1.9.d |
$1$ |
$\F_{3^{2}}$ |
$3$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 + 3 x + 9 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$13$ |
$[13, 91, 676, 6643, 59293, 529984, 4785157, 43053283, 387381124, 3486843451]$ |
$13$ |
$[13, 91, 676, 6643, 59293, 529984, 4785157, 43053283, 387381124, 3486843451]$ |
$1$ |
$0$ |
$5$ |
$12$ |
$3$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
| 1.16.ae |
$1$ |
$\F_{2^{4}}$ |
$2$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 - 4 x + 16 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$13$ |
$[13, 273, 4225, 65793, 1047553, 16769025, 268419073, 4295032833, 68720001025, 1099512676353]$ |
$13$ |
$[13, 273, 4225, 65793, 1047553, 16769025, 268419073, 4295032833, 68720001025, 1099512676353]$ |
$2$ |
$0$ |
$5$ |
$12$ |
$3$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
| 1.16.a |
$1$ |
$\F_{2^{4}}$ |
$2$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 + 16 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$17$ |
$[17, 289, 4097, 65025, 1048577, 16785409, 268435457, 4294836225, 68719476737, 1099513724929]$ |
$17$ |
$[17, 289, 4097, 65025, 1048577, 16785409, 268435457, 4294836225, 68719476737, 1099513724929]$ |
$1$ |
$0$ |
$5$ |
$12$ |
$2$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
simple |
| 1.16.e |
$1$ |
$\F_{2^{4}}$ |
$2$ |
✓ |
✓ |
|
|
✓ |
✓ |
✓ |
✓ |
$1 + 4 x + 16 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$21$ |
$[21, 273, 3969, 65793, 1049601, 16769025, 268451841, 4295032833, 68718952449, 1099512676353]$ |
$21$ |
$[21, 273, 3969, 65793, 1049601, 16769025, 268451841, 4295032833, 68718952449, 1099512676353]$ |
$2$ |
$0$ |
$5$ |
$12$ |
$3$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
| 1.64.ai |
$1$ |
$\F_{2^{6}}$ |
$2$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 - 8 x + 64 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$57$ |
$[57, 4161, 263169, 16781313, 1073709057, 68718952449, 4398044413953, 281474993487873, 18014398777917441, 1152921505680588801]$ |
$57$ |
$[57, 4161, 263169, 16781313, 1073709057, 68718952449, 4398044413953, 281474993487873, 18014398777917441, 1152921505680588801]$ |
$2$ |
$0$ |
$5$ |
$12$ |
$3$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
| 1.64.a |
$1$ |
$\F_{2^{6}}$ |
$2$ |
✓ |
✓ |
|
|
✓ |
✓ |
✓ |
✓ |
$1 + 64 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$65$ |
$[65, 4225, 262145, 16769025, 1073741825, 68720001025, 4398046511105, 281474943156225, 18014398509481985, 1152921506754330625]$ |
$65$ |
$[65, 4225, 262145, 16769025, 1073741825, 68720001025, 4398046511105, 281474943156225, 18014398509481985, 1152921506754330625]$ |
$1$ |
$0$ |
$5$ |
$12$ |
$2$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
simple |
| 1.64.i |
$1$ |
$\F_{2^{6}}$ |
$2$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 + 8 x + 64 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$73$ |
$[73, 4161, 261121, 16781313, 1073774593, 68718952449, 4398048608257, 281474993487873, 18014398241046529, 1152921505680588801]$ |
$73$ |
$[73, 4161, 261121, 16781313, 1073774593, 68718952449, 4398048608257, 281474993487873, 18014398241046529, 1152921505680588801]$ |
$2$ |
$0$ |
$5$ |
$12$ |
$3$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
| 1.81.aj |
$1$ |
$\F_{3^{4}}$ |
$3$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 - 9 x + 81 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$73$ |
$[73, 6643, 532900, 43053283, 3486725353, 282428473600, 22876787671993, 1853020231898563, 150094636071840100, 12157665462543713203]$ |
$73$ |
$[73, 6643, 532900, 43053283, 3486725353, 282428473600, 22876787671993, 1853020231898563, 150094636071840100, 12157665462543713203]$ |
$1$ |
$0$ |
$5$ |
$12$ |
$3$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
| 1.81.a |
$1$ |
$\F_{3^{4}}$ |
$3$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 + 81 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$82$ |
$[82, 6724, 531442, 43033600, 3486784402, 282430599364, 22876792454962, 1853020102758400, 150094635296999122, 12157665466030497604]$ |
$82$ |
$[82, 6724, 531442, 43033600, 3486784402, 282430599364, 22876792454962, 1853020102758400, 150094635296999122, 12157665466030497604]$ |
$2$ |
$0$ |
$5$ |
$12$ |
$2$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
simple |
| 1.81.j |
$1$ |
$\F_{3^{4}}$ |
$3$ |
✓ |
✓ |
|
|
✓ |
✓ |
✓ |
✓ |
$1 + 9 x + 81 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$91$ |
$[91, 6643, 529984, 43053283, 3486843451, 282428473600, 22876797237931, 1853020231898563, 150094634522158144, 12157665462543713203]$ |
$91$ |
$[91, 6643, 529984, 43053283, 3486843451, 282428473600, 22876797237931, 1853020231898563, 150094634522158144, 12157665462543713203]$ |
$1$ |
$0$ |
$5$ |
$12$ |
$3$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
| 1.121.al |
$1$ |
$\F_{11^{2}}$ |
$11$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 - 11 x + 121 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$111$ |
$[111, 14763, 1774224, 214373523, 25937263551, 3138424833600, 379749814096071, 45949730077931043, 5559917318208126864, 672749994958497433803]$ |
$111$ |
$[111, 14763, 1774224, 214373523, 25937263551, 3138424833600, 379749814096071, 45949730077931043, 5559917318208126864, 672749994958497433803]$ |
$2$ |
$0$ |
$5$ |
$12$ |
$3$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
| 1.121.a |
$1$ |
$\F_{11^{2}}$ |
$11$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 + 121 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$122$ |
$[122, 14884, 1771562, 214329600, 25937424602, 3138431919844, 379749833583242, 45949729434854400, 5559917313492231482, 672749994984434858404]$ |
$122$ |
$[122, 14884, 1771562, 214329600, 25937424602, 3138431919844, 379749833583242, 45949729434854400, 5559917313492231482, 672749994984434858404]$ |
$2$ |
$0$ |
$5$ |
$12$ |
$2$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
simple |
| 1.121.l |
$1$ |
$\F_{11^{2}}$ |
$11$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 + 11 x + 121 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$133$ |
$[133, 14763, 1768900, 214373523, 25937585653, 3138424833600, 379749853070413, 45949730077931043, 5559917308776336100, 672749994958497433803]$ |
$133$ |
$[133, 14763, 1768900, 214373523, 25937585653, 3138424833600, 379749853070413, 45949730077931043, 5559917308776336100, 672749994958497433803]$ |
$2$ |
$0$ |
$5$ |
$12$ |
$3$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
| 1.256.aq |
$1$ |
$\F_{2^{8}}$ |
$2$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 - 16 x + 256 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$241$ |
$[241, 65793, 16785409, 4295032833, 1099510579201, 281474943156225, 72057593769492481, 18446744078004518913, 4722366483007084167169, 1208925819615728686333953]$ |
$241$ |
$[241, 65793, 16785409, 4295032833, 1099510579201, 281474943156225, 72057593769492481, 18446744078004518913, 4722366483007084167169, 1208925819615728686333953]$ |
$2$ |
$0$ |
$5$ |
$12$ |
$3$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
| 1.256.a |
$1$ |
$\F_{2^{8}}$ |
$2$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 + 256 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$257$ |
$[257, 66049, 16777217, 4294836225, 1099511627777, 281475010265089, 72057594037927937, 18446744065119617025, 4722366482869645213697, 1208925819616828197961729]$ |
$257$ |
$[257, 66049, 16777217, 4294836225, 1099511627777, 281475010265089, 72057594037927937, 18446744065119617025, 4722366482869645213697, 1208925819616828197961729]$ |
$1$ |
$0$ |
$5$ |
$12$ |
$2$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
simple |
| 1.256.q |
$1$ |
$\F_{2^{8}}$ |
$2$ |
✓ |
✓ |
|
|
✓ |
✓ |
✓ |
✓ |
$1 + 16 x + 256 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$273$ |
$[273, 65793, 16769025, 4295032833, 1099512676353, 281474943156225, 72057594306363393, 18446744078004518913, 4722366482732206260225, 1208925819615728686333953]$ |
$273$ |
$[273, 65793, 16769025, 4295032833, 1099512676353, 281474943156225, 72057594306363393, 18446744078004518913, 4722366482732206260225, 1208925819615728686333953]$ |
$2$ |
$0$ |
$5$ |
$12$ |
$3$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
| 1.729.abb |
$1$ |
$\F_{3^{6}}$ |
$3$ |
✓ |
✓ |
|
|
✓ |
✓ |
✓ |
✓ |
$1 - 27 x + 729 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$703$ |
$[703, 532171, 387459856, 282430067923, 205891117745743, 150094634522158144, 109418989121052006007, 79766443077154939399843, 58149737003055310885360144, 42391158275216409405426527851]$ |
$703$ |
$[703, 532171, 387459856, 282430067923, 205891117745743, 150094634522158144, 109418989121052006007, 79766443077154939399843, 58149737003055310885360144, 42391158275216409405426527851]$ |
$1$ |
$0$ |
$5$ |
$12$ |
$3$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
| 1.729.a |
$1$ |
$\F_{3^{6}}$ |
$3$ |
✓ |
✓ |
|
|
✓ |
✓ |
✓ |
✓ |
$1 + 729 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$730$ |
$[730, 532900, 387420490, 282428473600, 205891132094650, 150094636071840100, 109418989131512359210, 79766443076307650790400, 58149737003040059690390170, 42391158275216615296558622500]$ |
$730$ |
$[730, 532900, 387420490, 282428473600, 205891132094650, 150094636071840100, 109418989131512359210, 79766443076307650790400, 58149737003040059690390170, 42391158275216615296558622500]$ |
$2$ |
$0$ |
$5$ |
$12$ |
$2$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
simple |
| 1.729.bb |
$1$ |
$\F_{3^{6}}$ |
$3$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 + 27 x + 729 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$757$ |
$[757, 532171, 387381124, 282430067923, 205891146443557, 150094634522158144, 109418989141972712413, 79766443077154939399843, 58149737003024808495420196, 42391158275216409405426527851]$ |
$757$ |
$[757, 532171, 387381124, 282430067923, 205891146443557, 150094634522158144, 109418989141972712413, 79766443077154939399843, 58149737003024808495420196, 42391158275216409405426527851]$ |
$1$ |
$0$ |
$5$ |
$12$ |
$3$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
| 1.1024.abg |
$1$ |
$\F_{2^{10}}$ |
$2$ |
✓ |
✓ |
|
|
✓ |
✓ |
✓ |
✓ |
$1 - 32 x + 1024 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$993$ |
$[993, 1049601, 1073807361, 1099512676353, 1125899873288193, 1152921502459363329, 1180591620683051565057, 1208925819615728686333953, 1237940039285450643643301889, 1267650600228230527396610048001]$ |
$993$ |
$[993, 1049601, 1073807361, 1099512676353, 1125899873288193, 1152921502459363329, 1180591620683051565057, 1208925819615728686333953, 1237940039285450643643301889, 1267650600228230527396610048001]$ |
$2$ |
$0$ |
$5$ |
$12$ |
$3$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
| 1.1024.a |
$1$ |
$\F_{2^{10}}$ |
$2$ |
✓ |
✓ |
|
|
✓ |
✓ |
✓ |
✓ |
$1 + 1024 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$1025$ |
$[1025, 1050625, 1073741825, 1099509530625, 1125899906842625, 1152921506754330625, 1180591620717411303425, 1208925819612430151450625, 1237940039285380274899124225, 1267650600228231653296516890625]$ |
$1025$ |
$[1025, 1050625, 1073741825, 1099509530625, 1125899906842625, 1152921506754330625, 1180591620717411303425, 1208925819612430151450625, 1237940039285380274899124225, 1267650600228231653296516890625]$ |
$1$ |
$0$ |
$5$ |
$12$ |
$2$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
simple |
| 1.1024.bg |
$1$ |
$\F_{2^{10}}$ |
$2$ |
✓ |
✓ |
|
|
✓ |
✓ |
✓ |
✓ |
$1 + 32 x + 1024 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$1057$ |
$[1057, 1049601, 1073676289, 1099512676353, 1125899940397057, 1152921502459363329, 1180591620751771041793, 1208925819615728686333953, 1237940039285309906154946561, 1267650600228230527396610048001]$ |
$1057$ |
$[1057, 1049601, 1073676289, 1099512676353, 1125899940397057, 1152921502459363329, 1180591620751771041793, 1208925819615728686333953, 1237940039285309906154946561, 1267650600228230527396610048001]$ |
$2$ |
$0$ |
$5$ |
$12$ |
$3$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
| 2.2.ad_f |
$2$ |
$\F_{2}$ |
$2$ |
✓ |
|
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 3 x + 5 x^{2} - 6 x^{3} + 4 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$0$ |
$[0, 6, 9, 10, 30, 87, 168, 274, 513, 1086]$ |
$1$ |
$[1, 19, 76, 171, 961, 5776, 22051, 69939, 261364, 1113799]$ |
$1$ |
$1$ |
$4$ |
$12$ |
$6$ |
\(\Q(\sqrt{-3}, \sqrt{5})\) |
$C_2^2$ |
simple |
| 2.2.ab_ab |
$2$ |
$\F_{2}$ |
$2$ |
✓ |
|
✓ |
✓ |
|
|
|
|
$1 - x - x^{2} - 2 x^{3} + 4 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$2$ |
$[2, 2, -1, 18, 22, 47, 142, 226, 503, 1082]$ |
$1$ |
$[1, 7, 16, 259, 751, 3136, 18103, 58275, 258064, 1109227]$ |
$0$ |
$0$ |
$6$ |
$12$ |
$3$ |
\(\Q(\sqrt{-3}, \sqrt{-7})\) |
$C_2^2$ |
simple |
| 2.2.a_ad |
$2$ |
$\F_{2}$ |
$2$ |
✓ |
|
✓ |
✓ |
|
|
✓ |
|
$1 - 3 x^{2} + 4 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$3$ |
$[3, -1, 9, 15, 33, 83, 129, 319, 513, 1139]$ |
$2$ |
$[2, 4, 74, 256, 1082, 5476, 16298, 82944, 261146, 1170724]$ |
$0$ |
$0$ |
$6$ |
$12$ |
$2$ |
\(\Q(i, \sqrt{7})\) |
$C_2^2$ |
simple |
| 2.2.a_b |
$2$ |
$\F_{2}$ |
$2$ |
✓ |
|
✓ |
✓ |
|
|
✓ |
✓ |
$1 + x^{2} + 4 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$3$ |
$[3, 7, 9, 31, 33, 43, 129, 223, 513, 1147]$ |
$6$ |
$[6, 36, 54, 576, 1086, 2916, 16134, 57600, 262926, 1179396]$ |
$1$ |
$1$ |
$4$ |
$12$ |
$2$ |
\(\Q(\sqrt{3}, \sqrt{-5})\) |
$C_2^2$ |
simple |
| 2.2.b_ab |
$2$ |
$\F_{2}$ |
$2$ |
✓ |
|
✓ |
✓ |
|
|
|
|
$1 + x - x^{2} + 2 x^{3} + 4 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$4$ |
$[4, 2, 19, 18, 44, 47, 116, 226, 523, 1082]$ |
$7$ |
$[7, 7, 196, 259, 1477, 3136, 14749, 58275, 268324, 1109227]$ |
$0$ |
$0$ |
$6$ |
$12$ |
$3$ |
\(\Q(\sqrt{-3}, \sqrt{-7})\) |
$C_2^2$ |
simple |
| 2.2.d_f |
$2$ |
$\F_{2}$ |
$2$ |
✓ |
|
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 3 x + 5 x^{2} + 6 x^{3} + 4 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$6$ |
$[6, 6, 9, 10, 36, 87, 90, 274, 513, 1086]$ |
$19$ |
$[19, 19, 76, 171, 1159, 5776, 11989, 69939, 261364, 1113799]$ |
$1$ |
$1$ |
$4$ |
$12$ |
$6$ |
\(\Q(\sqrt{-3}, \sqrt{5})\) |
$C_2^2$ |
simple |
| 2.3.ab_ac |
$2$ |
$\F_{3}$ |
$3$ |
✓ |
|
✓ |
✓ |
|
|
✓ |
✓ |
$1 - x - 2 x^{2} - 3 x^{3} + 9 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$3$ |
$[3, 5, 12, 89, 213, 710, 2271, 6449, 19956, 59525]$ |
$4$ |
$[4, 48, 400, 7104, 52204, 518400, 4969276, 42311424, 392832400, 3514999728]$ |
$1$ |
$1$ |
$6$ |
$12$ |
$3$ |
\(\Q(\sqrt{-3}, \sqrt{-11})\) |
$C_2^2$ |
simple |
| 2.3.a_ag |
$2$ |
$\F_{3}$ |
$3$ |
✓ |
|
✓ |
|
|
✓ |
✓ |
|
$( 1 - 3 x^{2} )^{2}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$4$ |
$[4, -2, 28, 46, 244, 622, 2188, 6238, 19684, 58078]$ |
$4$ |
$[4, 16, 676, 4096, 58564, 456976, 4778596, 40960000, 387381124, 3429742096]$ |
$0$ |
$0$ |
$9$ |
$12$ |
$2$ |
\(\Q(\sqrt{3}) \) |
$C_2$ |
simple |
| 2.3.a_af |
$2$ |
$\F_{3}$ |
$3$ |
✓ |
|
✓ |
✓ |
|
|
✓ |
|
$1 - 5 x^{2} + 9 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$4$ |
$[4, 0, 28, 68, 244, 750, 2188, 6788, 19684, 60000]$ |
$5$ |
$[5, 25, 740, 5625, 59525, 547600, 4785485, 44555625, 387399620, 3543225625]$ |
$0$ |
$0$ |
$6$ |
$12$ |
$2$ |
\(\Q(i, \sqrt{11})\) |
$C_2^2$ |
simple |
| 2.3.a_ac |
$2$ |
$\F_{3}$ |
$3$ |
✓ |
|
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 2 x^{2} + 9 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$4$ |
$[4, 6, 28, 110, 244, 822, 2188, 6494, 19684, 58086]$ |
$8$ |
$[8, 64, 776, 9216, 58568, 602176, 4785992, 42614784, 387417224, 3430210624]$ |
$2$ |
$2$ |
$8$ |
$12$ |
$2$ |
\(\Q(\zeta_{8})\) |
$C_2^2$ |
simple |
| 2.3.a_g |
$2$ |
$\F_{3}$ |
$3$ |
|
|
✓ |
|
|
✓ |
✓ |
|
$( 1 + 3 x^{2} )^{2}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$4$ |
$[4, 22, 28, 46, 244, 838, 2188, 6238, 19684, 60022]$ |
$16$ |
$[16, 256, 784, 4096, 59536, 614656, 4787344, 40960000, 387459856, 3544535296]$ |
$0$ |
$0$ |
$9$ |
$12$ |
$2$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
1.3.a 2 |
| 2.3.b_ac |
$2$ |
$\F_{3}$ |
$3$ |
✓ |
|
✓ |
✓ |
|
|
✓ |
✓ |
$1 + x - 2 x^{2} + 3 x^{3} + 9 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$5$ |
$[5, 5, 44, 89, 275, 710, 2105, 6449, 19412, 59525]$ |
$12$ |
$[12, 48, 1296, 7104, 67332, 518400, 4606068, 42311424, 382124304, 3514999728]$ |
$1$ |
$1$ |
$6$ |
$12$ |
$3$ |
\(\Q(\sqrt{-3}, \sqrt{-11})\) |
$C_2^2$ |
simple |
| 2.4.ai_y |
$2$ |
$\F_{2^{2}}$ |
$2$ |
|
|
|
|
|
✓ |
✓ |
|
$( 1 - 2 x )^{4}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$-3$ |
$[-3, 1, 33, 193, 897, 3841, 15873, 64513, 260097, 1044481]$ |
$1$ |
$[1, 81, 2401, 50625, 923521, 15752961, 260144641, 4228250625, 68184176641, 1095222947841]$ |
$0$ |
$0$ |
$19$ |
$12$ |
$1$ |
\(\Q\) |
Trivial |
1.4.ae 2 |
| 2.4.af_o |
$2$ |
$\F_{2^{2}}$ |
$2$ |
|
|
✓ |
|
✓ |
|
✓ |
|
$( 1 - 3 x + 4 x^{2} )( 1 - 2 x + 4 x^{2} )$ |
$[0,\frac{1}{2},\frac{1}{2},1]$ |
$1$ |
$1$ |
$1$ |
$1$ |
$1$ |
$0$ |
$[0, 20, 90, 304, 1050, 4016, 16170, 65344, 262170, 1048400]$ |
$6$ |
$[6, 336, 5994, 78624, 1074426, 16447536, 264956586, 4282334784, 68725531674, 1099326896976]$ |
$0$ |
$0$ |
$10$ |
$12$ |
$3$ |
\(\Q(\sqrt{-7}) \), \(\Q(\sqrt{-3}) \) |
$C_2$, $C_2$ |
1.4.ad $\times$ 1.4.ac |
| 2.4.ad_f |
$2$ |
$\F_{2^{2}}$ |
$2$ |
✓ |
|
|
✓ |
|
|
✓ |
✓ |
$1 - 3 x + 5 x^{2} - 12 x^{3} + 16 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$2$ |
$[2, 18, 47, 226, 1082, 4191, 16298, 65986, 264143, 1049778]$ |
$7$ |
$[7, 259, 3136, 58275, 1109227, 17172736, 267001147, 4324529475, 69244764736, 1100771362579]$ |
$2$ |
$2$ |
$6$ |
$12$ |
$3$ |
\(\Q(\sqrt{-3}, \sqrt{-7})\) |
$C_2^2$ |
simple |
| 2.4.ad_h |
$2$ |
$\F_{2^{2}}$ |
$2$ |
✓ |
|
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 3 x + 7 x^{2} - 12 x^{3} + 16 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$2$ |
$[2, 22, 65, 250, 1112, 4327, 16382, 65074, 262145, 1048102]$ |
$9$ |
$[9, 351, 4212, 63531, 1141299, 17740944, 268402689, 4264772499, 68719584492, 1099012730751]$ |
$4$ |
$4$ |
$4$ |
$12$ |
$6$ |
\(\Q(\sqrt{-3}, \sqrt{13})\) |
$C_2^2$ |
simple |
| 2.4.ad_i |
$2$ |
$\F_{2^{2}}$ |
$2$ |
|
|
✓ |
|
✓ |
|
✓ |
✓ |
$( 1 - 3 x + 4 x^{2} )( 1 + 4 x^{2} )$ |
$[0,\frac{1}{2},\frac{1}{2},1]$ |
$1$ |
$1$ |
$1$ |
$1$ |
$1$ |
$2$ |
$[2, 24, 74, 256, 1082, 4272, 16298, 64576, 261146, 1049424]$ |
$10$ |
$[10, 400, 4810, 64800, 1109050, 17508400, 267042730, 4232347200, 68458118170, 1100399410000]$ |
$1$ |
$1$ |
$10$ |
$12$ |
$2$ |
\(\Q(\sqrt{-7}) \), \(\Q(\sqrt{-1}) \) |
$C_2$, $C_2$ |
1.4.ad $\times$ 1.4.a |
| 2.4.ad_k |
$2$ |
$\F_{2^{2}}$ |
$2$ |
|
|
✓ |
|
✓ |
|
✓ |
|
$( 1 - 2 x + 4 x^{2} )( 1 - x + 4 x^{2} )$ |
$[0,\frac{1}{2},\frac{1}{2},1]$ |
$1$ |
$1$ |
$1$ |
$1$ |
$1$ |
$2$ |
$[2, 28, 92, 256, 932, 3976, 16508, 66016, 262388, 1047928]$ |
$12$ |
$[12, 504, 6156, 65520, 957252, 16288776, 270451452, 4326547680, 68782902516, 1098831485304]$ |
$0$ |
$0$ |
$10$ |
$12$ |
$3$ |
\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-15}) \) |
$C_2$, $C_2$ |
1.4.ac $\times$ 1.4.ab |
| 2.4.ab_ad |
$2$ |
$\F_{2^{2}}$ |
$2$ |
✓ |
|
✓ |
✓ |
|
|
✓ |
✓ |
$1 - x - 3 x^{2} - 4 x^{3} + 16 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$4$ |
$[4, 10, 43, 274, 964, 4111, 16636, 65314, 263707, 1050250]$ |
$9$ |
$[9, 171, 2916, 69939, 988749, 16842816, 272594709, 4280336739, 69130081476, 1101267647451]$ |
$1$ |
$1$ |
$6$ |
$12$ |
$3$ |
\(\Q(\sqrt{-3}, \sqrt{5})\) |
$C_2^2$ |
simple |
| 2.4.ab_c |
$2$ |
$\F_{2^{2}}$ |
$2$ |
|
|
✓ |
|
✓ |
|
✓ |
✓ |
$( 1 - 3 x + 4 x^{2} )( 1 + 2 x + 4 x^{2} )$ |
$[0,\frac{1}{2},\frac{1}{2},1]$ |
$1$ |
$1$ |
$1$ |
$1$ |
$1$ |
$4$ |
$[4, 20, 58, 304, 1114, 4016, 16426, 65344, 260122, 1048400]$ |
$14$ |
$[14, 336, 3626, 78624, 1143674, 16447536, 269128874, 4282334784, 68190704666, 1099326896976]$ |
$2$ |
$2$ |
$10$ |
$12$ |
$3$ |
\(\Q(\sqrt{-7}) \), \(\Q(\sqrt{-3}) \) |
$C_2$, $C_2$ |
1.4.ad $\times$ 1.4.c |
| 2.4.ab_g |
$2$ |
$\F_{2^{2}}$ |
$2$ |
|
|
✓ |
|
✓ |
|
✓ |
✓ |
$( 1 - 2 x + 4 x^{2} )( 1 + x + 4 x^{2} )$ |
$[0,\frac{1}{2},\frac{1}{2},1]$ |
$1$ |
$1$ |
$1$ |
$1$ |
$1$ |
$4$ |
$[4, 28, 70, 256, 1054, 3976, 16006, 66016, 263950, 1047928]$ |
$18$ |
$[18, 504, 4374, 65520, 1078398, 16288776, 262290438, 4326547680, 69193972494, 1098831485304]$ |
$2$ |
$2$ |
$10$ |
$12$ |
$3$ |
\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-15}) \) |
$C_2$, $C_2$ |
1.4.ac $\times$ 1.4.b |
| 2.4.ab_i |
$2$ |
$\F_{2^{2}}$ |
$2$ |
|
|
✓ |
|
✓ |
|
✓ |
|
$( 1 - x + 4 x^{2} )( 1 + 4 x^{2} )$ |
$[0,\frac{1}{2},\frac{1}{2},1]$ |
$1$ |
$1$ |
$1$ |
$1$ |
$1$ |
$4$ |
$[4, 32, 76, 208, 964, 4232, 16636, 65248, 261364, 1048952]$ |
$20$ |
$[20, 600, 4940, 54000, 988100, 17339400, 272580860, 4276044000, 68515265780, 1099903515000]$ |
$0$ |
$0$ |
$10$ |
$12$ |
$2$ |
\(\Q(\sqrt{-15}) \), \(\Q(\sqrt{-1}) \) |
$C_2$, $C_2$ |
1.4.ab $\times$ 1.4.a |
| 2.4.a_ai |
$2$ |
$\F_{2^{2}}$ |
$2$ |
|
|
✓ |
|
|
✓ |
✓ |
|
$( 1 - 2 x )^{2}( 1 + 2 x )^{2}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$5$ |
$[5, 1, 65, 193, 1025, 3841, 16385, 64513, 262145, 1044481]$ |
$9$ |
$[9, 81, 3969, 50625, 1046529, 15752961, 268402689, 4228250625, 68718952449, 1095222947841]$ |
$0$ |
$0$ |
$19$ |
$12$ |
$2$ |
\(\Q\), \(\Q\) |
Trivial, Trivial |
1.4.ae $\times$ 1.4.e |