Learn more

The results below are complete, since the LMFDB contains all isogeny classes of abelian varieties of dimension at most 3 over fields of cardinality at most 25

Refine search


Results (13 matches)

  displayed columns for results
Label Dimension Base field L-polynomial $p$-rank Number fields Galois groups Isogeny factors
3.2.ab_a_a $3$ $\F_{2}$ $1 - x - 4 x^{5} + 8 x^{6}$ $1$ 6.0.839056.1 $S_4\times C_2$
3.2.ab_b_ad $3$ $\F_{2}$ $1 - x + x^{2} - 3 x^{3} + 2 x^{4} - 4 x^{5} + 8 x^{6}$ $3$ 6.0.503792.1 $S_4\times C_2$
3.2.ab_b_b $3$ $\F_{2}$ $( 1 - x + 2 x^{2} )( 1 - x^{2} + 4 x^{4} )$ $3$ \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{-3}, \sqrt{5})\) $C_2$, $C_2^2$
3.2.ab_c_ac $3$ $\F_{2}$ $1 - x + 2 x^{2} - 2 x^{3} + 4 x^{4} - 4 x^{5} + 8 x^{6}$ $1$ 6.0.2296688.1 $S_4\times C_2$
3.2.ab_d_ad $3$ $\F_{2}$ $1 - x + 3 x^{2} - 3 x^{3} + 6 x^{4} - 4 x^{5} + 8 x^{6}$ $3$ 6.0.3307504.1 $S_4\times C_2$
3.2.a_b_a $3$ $\F_{2}$ $( 1 + 2 x^{2} )( 1 - x^{2} + 4 x^{4} )$ $2$ \(\Q(\sqrt{-2}) \), \(\Q(\sqrt{-3}, \sqrt{5})\) $C_2$, $C_2^2$
3.2.a_c_ab $3$ $\F_{2}$ $1 + 2 x^{2} - x^{3} + 4 x^{4} + 8 x^{6}$ $3$ 6.0.6660007.1 $S_4\times C_2$
3.2.a_c_b $3$ $\F_{2}$ $1 + 2 x^{2} + x^{3} + 4 x^{4} + 8 x^{6}$ $3$ 6.0.6660007.1 $S_4\times C_2$
3.2.b_a_a $3$ $\F_{2}$ $1 + x + 4 x^{5} + 8 x^{6}$ $1$ 6.0.839056.1 $S_4\times C_2$
3.2.b_b_ab $3$ $\F_{2}$ $( 1 + x + 2 x^{2} )( 1 - x^{2} + 4 x^{4} )$ $3$ \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{-3}, \sqrt{5})\) $C_2$, $C_2^2$
3.2.b_b_d $3$ $\F_{2}$ $1 + x + x^{2} + 3 x^{3} + 2 x^{4} + 4 x^{5} + 8 x^{6}$ $3$ 6.0.503792.1 $S_4\times C_2$
3.2.b_c_c $3$ $\F_{2}$ $1 + x + 2 x^{2} + 2 x^{3} + 4 x^{4} + 4 x^{5} + 8 x^{6}$ $1$ 6.0.2296688.1 $S_4\times C_2$
3.2.b_d_d $3$ $\F_{2}$ $1 + x + 3 x^{2} + 3 x^{3} + 6 x^{4} + 4 x^{5} + 8 x^{6}$ $3$ 6.0.3307504.1 $S_4\times C_2$
  displayed columns for results