Learn more

Refine search


Results (1-50 of 3107 matches)

Next   displayed columns for results
Label Dimension Base field L-polynomial $p$-rank Number fields Galois groups Isogeny factors
2.64.abg_ou $2$ $\F_{2^{6}}$ $( 1 - 8 x )^{4}$ $0$ \(\Q\) Trivial
2.64.abf_oe $2$ $\F_{2^{6}}$ $( 1 - 8 x )^{2}( 1 - 15 x + 64 x^{2} )$ $1$ \(\Q\), \(\Q(\sqrt{-31}) \) Trivial, $C_2$
2.64.abe_np $2$ $\F_{2^{6}}$ $( 1 - 15 x + 64 x^{2} )^{2}$ $2$ \(\Q(\sqrt{-31}) \) $C_2$
2.64.abd_my $2$ $\F_{2^{6}}$ $( 1 - 8 x )^{2}( 1 - 13 x + 64 x^{2} )$ $1$ \(\Q\), \(\Q(\sqrt{-87}) \) Trivial, $C_2$
2.64.abd_mz $2$ $\F_{2^{6}}$ $1 - 29 x + 337 x^{2} - 1856 x^{3} + 4096 x^{4}$ $2$ 4.0.23225.1 $D_{4}$
2.64.abc_mj $2$ $\F_{2^{6}}$ $1 - 28 x + 321 x^{2} - 1792 x^{3} + 4096 x^{4}$ $2$ 4.0.129168.2 $D_{4}$
2.64.abc_ml $2$ $\F_{2^{6}}$ $( 1 - 15 x + 64 x^{2} )( 1 - 13 x + 64 x^{2} )$ $2$ \(\Q(\sqrt{-31}) \), \(\Q(\sqrt{-87}) \) $C_2$, $C_2$
2.64.abb_ls $2$ $\F_{2^{6}}$ $( 1 - 8 x )^{2}( 1 - 11 x + 64 x^{2} )$ $1$ \(\Q\), \(\Q(\sqrt{-15}) \) Trivial, $C_2$
2.64.abb_lt $2$ $\F_{2^{6}}$ $1 - 27 x + 305 x^{2} - 1728 x^{3} + 4096 x^{4}$ $2$ 4.0.381465.2 $D_{4}$
2.64.abb_lv $2$ $\F_{2^{6}}$ $1 - 27 x + 307 x^{2} - 1728 x^{3} + 4096 x^{4}$ $2$ \(\Q(\sqrt{-3}, \sqrt{13})\) $C_2^2$
2.64.abb_lx $2$ $\F_{2^{6}}$ $1 - 27 x + 309 x^{2} - 1728 x^{3} + 4096 x^{4}$ $2$ 4.0.108625.1 $D_{4}$
2.64.aba_ld $2$ $\F_{2^{6}}$ $1 - 26 x + 289 x^{2} - 1664 x^{3} + 4096 x^{4}$ $2$ 4.0.1088.2 $D_{4}$
2.64.aba_lf $2$ $\F_{2^{6}}$ $1 - 26 x + 291 x^{2} - 1664 x^{3} + 4096 x^{4}$ $2$ 4.0.1442880.5 $D_{4}$
2.64.aba_lh $2$ $\F_{2^{6}}$ $( 1 - 15 x + 64 x^{2} )( 1 - 11 x + 64 x^{2} )$ $2$ \(\Q(\sqrt{-31}) \), \(\Q(\sqrt{-15}) \) $C_2$, $C_2$
2.64.aba_lj $2$ $\F_{2^{6}}$ $1 - 26 x + 295 x^{2} - 1664 x^{3} + 4096 x^{4}$ $2$ 4.0.375872.1 $D_{4}$
2.64.aba_ll $2$ $\F_{2^{6}}$ $( 1 - 13 x + 64 x^{2} )^{2}$ $2$ \(\Q(\sqrt{-87}) \) $C_2$
2.64.az_km $2$ $\F_{2^{6}}$ $( 1 - 8 x )^{2}( 1 - 9 x + 64 x^{2} )$ $1$ \(\Q\), \(\Q(\sqrt{-7}) \) Trivial, $C_2$
2.64.az_kn $2$ $\F_{2^{6}}$ $1 - 25 x + 273 x^{2} - 1600 x^{3} + 4096 x^{4}$ $2$ 4.0.20025.1 $D_{4}$
2.64.az_kp $2$ $\F_{2^{6}}$ $1 - 25 x + 275 x^{2} - 1600 x^{3} + 4096 x^{4}$ $2$ 4.0.3297921.2 $D_{4}$
2.64.az_kr $2$ $\F_{2^{6}}$ $1 - 25 x + 277 x^{2} - 1600 x^{3} + 4096 x^{4}$ $2$ 4.0.3385025.1 $D_{4}$
2.64.az_kt $2$ $\F_{2^{6}}$ $1 - 25 x + 279 x^{2} - 1600 x^{3} + 4096 x^{4}$ $2$ 4.0.2491209.1 $D_{4}$
2.64.az_ku $2$ $\F_{2^{6}}$ $1 - 25 x + 280 x^{2} - 1600 x^{3} + 4096 x^{4}$ $1$ 4.0.29189.1 $D_{4}$
2.64.az_kv $2$ $\F_{2^{6}}$ $1 - 25 x + 281 x^{2} - 1600 x^{3} + 4096 x^{4}$ $2$ 4.0.136721.1 $D_{4}$
2.64.az_kx $2$ $\F_{2^{6}}$ $1 - 25 x + 283 x^{2} - 1600 x^{3} + 4096 x^{4}$ $2$ 4.0.223025.1 $D_{4}$
2.64.ay_jw $2$ $\F_{2^{6}}$ $( 1 - 8 x )^{2}( 1 - 8 x + 64 x^{2} )$ $0$ \(\Q\), \(\Q(\sqrt{-3}) \) Trivial, $C_2$
2.64.ay_jx $2$ $\F_{2^{6}}$ $1 - 24 x + 257 x^{2} - 1536 x^{3} + 4096 x^{4}$ $2$ 4.0.2768400.1 $D_{4}$
2.64.ay_jz $2$ $\F_{2^{6}}$ $1 - 24 x + 259 x^{2} - 1536 x^{3} + 4096 x^{4}$ $2$ 4.0.390897.1 $D_{4}$
2.64.ay_kb $2$ $\F_{2^{6}}$ $1 - 24 x + 261 x^{2} - 1536 x^{3} + 4096 x^{4}$ $2$ 4.0.7482640.2 $D_{4}$
2.64.ay_kd $2$ $\F_{2^{6}}$ $( 1 - 15 x + 64 x^{2} )( 1 - 9 x + 64 x^{2} )$ $2$ \(\Q(\sqrt{-31}) \), \(\Q(\sqrt{-7}) \) $C_2$, $C_2$
2.64.ay_kf $2$ $\F_{2^{6}}$ $1 - 24 x + 265 x^{2} - 1536 x^{3} + 4096 x^{4}$ $2$ 4.0.609168.2 $D_{4}$
2.64.ay_kh $2$ $\F_{2^{6}}$ $1 - 24 x + 267 x^{2} - 1536 x^{3} + 4096 x^{4}$ $2$ 4.0.214225.2 $D_{4}$
2.64.ay_kj $2$ $\F_{2^{6}}$ $1 - 24 x + 269 x^{2} - 1536 x^{3} + 4096 x^{4}$ $2$ 4.0.1462032.4 $D_{4}$
2.64.ay_kl $2$ $\F_{2^{6}}$ $( 1 - 13 x + 64 x^{2} )( 1 - 11 x + 64 x^{2} )$ $2$ \(\Q(\sqrt{-87}) \), \(\Q(\sqrt{-15}) \) $C_2$, $C_2$
2.64.ax_jg $2$ $\F_{2^{6}}$ $( 1 - 8 x )^{2}( 1 - 7 x + 64 x^{2} )$ $1$ \(\Q\), \(\Q(\sqrt{-23}) \) Trivial, $C_2$
2.64.ax_jh $2$ $\F_{2^{6}}$ $1 - 23 x + 241 x^{2} - 1472 x^{3} + 4096 x^{4}$ $2$ 4.0.4369673.1 $D_{4}$
2.64.ax_jj $2$ $\F_{2^{6}}$ $1 - 23 x + 243 x^{2} - 1472 x^{3} + 4096 x^{4}$ $2$ 4.0.10555137.1 $D_{4}$
2.64.ax_jl $2$ $\F_{2^{6}}$ $1 - 23 x + 245 x^{2} - 1472 x^{3} + 4096 x^{4}$ $2$ 4.0.13786305.2 $D_{4}$
2.64.ax_jn $2$ $\F_{2^{6}}$ $1 - 23 x + 247 x^{2} - 1472 x^{3} + 4096 x^{4}$ $2$ 4.0.14609609.1 $D_{4}$
2.64.ax_jo $2$ $\F_{2^{6}}$ $( 1 - 15 x + 64 x^{2} )( 1 - 8 x + 64 x^{2} )$ $1$ \(\Q(\sqrt{-31}) \), \(\Q(\sqrt{-3}) \) $C_2$, $C_2$
2.64.ax_jp $2$ $\F_{2^{6}}$ $1 - 23 x + 249 x^{2} - 1472 x^{3} + 4096 x^{4}$ $2$ 4.0.167625.1 $D_{4}$
2.64.ax_jr $2$ $\F_{2^{6}}$ $1 - 23 x + 251 x^{2} - 1472 x^{3} + 4096 x^{4}$ $2$ 4.0.1249897.1 $D_{4}$
2.64.ax_jt $2$ $\F_{2^{6}}$ $1 - 23 x + 253 x^{2} - 1472 x^{3} + 4096 x^{4}$ $2$ 4.0.8188817.2 $D_{4}$
2.64.ax_jv $2$ $\F_{2^{6}}$ $1 - 23 x + 255 x^{2} - 1472 x^{3} + 4096 x^{4}$ $2$ 4.0.4967865.1 $D_{4}$
2.64.ax_jw $2$ $\F_{2^{6}}$ $1 - 23 x + 256 x^{2} - 1472 x^{3} + 4096 x^{4}$ $1$ 4.0.54332.1 $D_{4}$
2.64.ax_jx $2$ $\F_{2^{6}}$ $1 - 23 x + 257 x^{2} - 1472 x^{3} + 4096 x^{4}$ $2$ 4.0.2163369.2 $D_{4}$
2.64.ax_jz $2$ $\F_{2^{6}}$ $1 - 23 x + 259 x^{2} - 1472 x^{3} + 4096 x^{4}$ $2$ 4.0.358625.1 $D_{4}$
2.64.aw_ir $2$ $\F_{2^{6}}$ $1 - 22 x + 225 x^{2} - 1408 x^{3} + 4096 x^{4}$ $2$ 4.0.406080.1 $D_{4}$
2.64.aw_it $2$ $\F_{2^{6}}$ $1 - 22 x + 227 x^{2} - 1408 x^{3} + 4096 x^{4}$ $2$ 4.0.16425024.1 $D_{4}$
2.64.aw_iv $2$ $\F_{2^{6}}$ $1 - 22 x + 229 x^{2} - 1408 x^{3} + 4096 x^{4}$ $2$ 4.0.88625.1 $D_{4}$
2.64.aw_ix $2$ $\F_{2^{6}}$ $1 - 22 x + 231 x^{2} - 1408 x^{3} + 4096 x^{4}$ $2$ 4.0.318528.7 $D_{4}$
Next   displayed columns for results