Learn more

Refine search


Results (1-50 of 137575 matches)

Next   displayed columns for results
Label Dimension Base field L-polynomial $p$-rank Number fields Galois groups Isogeny factors
2.625.adw_fog $2$ $\F_{5^{4}}$ $( 1 - 25 x )^{4}$ $0$ \(\Q\) Trivial
2.625.adv_fmi $2$ $\F_{5^{4}}$ $( 1 - 25 x )^{2}( 1 - 49 x + 625 x^{2} )$ $1$ \(\Q\), \(\Q(\sqrt{-11}) \) Trivial, $C_2$
2.625.adu_fkk $2$ $\F_{5^{4}}$ $( 1 - 25 x )^{2}( 1 - 48 x + 625 x^{2} )$ $1$ \(\Q\), \(\Q(\sqrt{-1}) \) Trivial, $C_2$
2.625.adu_fkl $2$ $\F_{5^{4}}$ $( 1 - 49 x + 625 x^{2} )^{2}$ $2$ \(\Q(\sqrt{-11}) \) $C_2$
2.625.adt_fim $2$ $\F_{5^{4}}$ $( 1 - 25 x )^{2}( 1 - 47 x + 625 x^{2} )$ $1$ \(\Q\), \(\Q(\sqrt{-291}) \) Trivial, $C_2$
2.625.adt_fin $2$ $\F_{5^{4}}$ $1 - 97 x + 3601 x^{2} - 60625 x^{3} + 390625 x^{4}$ $2$ 4.0.242525.2 $D_{4}$
2.625.adt_fio $2$ $\F_{5^{4}}$ $( 1 - 49 x + 625 x^{2} )( 1 - 48 x + 625 x^{2} )$ $2$ \(\Q(\sqrt{-11}) \), \(\Q(\sqrt{-1}) \) $C_2$, $C_2$
2.625.ads_fgo $2$ $\F_{5^{4}}$ $( 1 - 25 x )^{2}( 1 - 46 x + 625 x^{2} )$ $1$ \(\Q\), \(\Q(\sqrt{-6}) \) Trivial, $C_2$
2.625.ads_fgp $2$ $\F_{5^{4}}$ $1 - 96 x + 3551 x^{2} - 60000 x^{3} + 390625 x^{4}$ $2$ 4.0.1382544.1 $D_{4}$
2.625.ads_fgq $2$ $\F_{5^{4}}$ $1 - 96 x + 3552 x^{2} - 60000 x^{3} + 390625 x^{4}$ $2$ 4.0.1229056.2 $D_{4}$
2.625.ads_fgr $2$ $\F_{5^{4}}$ $( 1 - 49 x + 625 x^{2} )( 1 - 47 x + 625 x^{2} )$ $2$ \(\Q(\sqrt{-11}) \), \(\Q(\sqrt{-291}) \) $C_2$, $C_2$
2.625.ads_fgs $2$ $\F_{5^{4}}$ $( 1 - 48 x + 625 x^{2} )^{2}$ $2$ \(\Q(\sqrt{-1}) \) $C_2$
2.625.adr_fer $2$ $\F_{5^{4}}$ $1 - 95 x + 3501 x^{2} - 59375 x^{3} + 390625 x^{4}$ $2$ 4.0.4189941.1 $D_{4}$
2.625.adr_fes $2$ $\F_{5^{4}}$ $1 - 95 x + 3502 x^{2} - 59375 x^{3} + 390625 x^{4}$ $2$ 4.0.5492156.1 $D_{4}$
2.625.adr_fet $2$ $\F_{5^{4}}$ $1 - 95 x + 3503 x^{2} - 59375 x^{3} + 390625 x^{4}$ $2$ 4.0.4818021.2 $D_{4}$
2.625.adr_feu $2$ $\F_{5^{4}}$ $( 1 - 49 x + 625 x^{2} )( 1 - 46 x + 625 x^{2} )$ $2$ \(\Q(\sqrt{-11}) \), \(\Q(\sqrt{-6}) \) $C_2$, $C_2$
2.625.adr_few $2$ $\F_{5^{4}}$ $( 1 - 48 x + 625 x^{2} )( 1 - 47 x + 625 x^{2} )$ $2$ \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-291}) \) $C_2$, $C_2$
2.625.adq_fcs $2$ $\F_{5^{4}}$ $( 1 - 25 x )^{2}( 1 - 44 x + 625 x^{2} )$ $1$ \(\Q\), \(\Q(\sqrt{-141}) \) Trivial, $C_2$
2.625.adq_fct $2$ $\F_{5^{4}}$ $1 - 94 x + 3451 x^{2} - 58750 x^{3} + 390625 x^{4}$ $2$ 4.0.601664.1 $D_{4}$
2.625.adq_fcu $2$ $\F_{5^{4}}$ $1 - 94 x + 3452 x^{2} - 58750 x^{3} + 390625 x^{4}$ $2$ 4.0.14742336.1 $D_{4}$
2.625.adq_fcv $2$ $\F_{5^{4}}$ $1 - 94 x + 3453 x^{2} - 58750 x^{3} + 390625 x^{4}$ $2$ 4.0.16248384.1 $D_{4}$
2.625.adq_fcw $2$ $\F_{5^{4}}$ $1 - 94 x + 3454 x^{2} - 58750 x^{3} + 390625 x^{4}$ $2$ 4.0.940400.1 $D_{4}$
2.625.adq_fcy $2$ $\F_{5^{4}}$ $1 - 94 x + 3456 x^{2} - 58750 x^{3} + 390625 x^{4}$ $2$ 4.0.8126784.1 $D_{4}$
2.625.adq_fcz $2$ $\F_{5^{4}}$ $1 - 94 x + 3457 x^{2} - 58750 x^{3} + 390625 x^{4}$ $2$ 4.0.4214336.1 $D_{4}$
2.625.adq_fda $2$ $\F_{5^{4}}$ $( 1 - 48 x + 625 x^{2} )( 1 - 46 x + 625 x^{2} )$ $2$ \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-6}) \) $C_2$, $C_2$
2.625.adq_fdb $2$ $\F_{5^{4}}$ $( 1 - 47 x + 625 x^{2} )^{2}$ $2$ \(\Q(\sqrt{-291}) \) $C_2$
2.625.adp_fau $2$ $\F_{5^{4}}$ $( 1 - 25 x )^{2}( 1 - 43 x + 625 x^{2} )$ $1$ \(\Q\), \(\Q(\sqrt{-651}) \) Trivial, $C_2$
2.625.adp_fav $2$ $\F_{5^{4}}$ $1 - 93 x + 3401 x^{2} - 58125 x^{3} + 390625 x^{4}$ $2$ 4.0.232525.1 $D_{4}$
2.625.adp_faw $2$ $\F_{5^{4}}$ $1 - 93 x + 3402 x^{2} - 58125 x^{3} + 390625 x^{4}$ $2$ 4.0.31273324.1 $D_{4}$
2.625.adp_fax $2$ $\F_{5^{4}}$ $1 - 93 x + 3403 x^{2} - 58125 x^{3} + 390625 x^{4}$ $2$ 4.0.38207421.1 $D_{4}$
2.625.adp_fay $2$ $\F_{5^{4}}$ $1 - 93 x + 3404 x^{2} - 58125 x^{3} + 390625 x^{4}$ $2$ 4.0.10132056.2 $D_{4}$
2.625.adp_fba $2$ $\F_{5^{4}}$ $( 1 - 49 x + 625 x^{2} )( 1 - 44 x + 625 x^{2} )$ $2$ \(\Q(\sqrt{-11}) \), \(\Q(\sqrt{-141}) \) $C_2$, $C_2$
2.625.adp_fbb $2$ $\F_{5^{4}}$ $1 - 93 x + 3407 x^{2} - 58125 x^{3} + 390625 x^{4}$ $2$ 4.0.28730709.1 $D_{4}$
2.625.adp_fbc $2$ $\F_{5^{4}}$ $1 - 93 x + 3408 x^{2} - 58125 x^{3} + 390625 x^{4}$ $2$ 4.0.5380024.1 $D_{4}$
2.625.adp_fbd $2$ $\F_{5^{4}}$ $1 - 93 x + 3409 x^{2} - 58125 x^{3} + 390625 x^{4}$ $2$ 4.0.1573221.2 $D_{4}$
2.625.adp_fbf $2$ $\F_{5^{4}}$ $1 - 93 x + 3411 x^{2} - 58125 x^{3} + 390625 x^{4}$ $2$ 4.0.2560525.1 $D_{4}$
2.625.adp_fbg $2$ $\F_{5^{4}}$ $( 1 - 47 x + 625 x^{2} )( 1 - 46 x + 625 x^{2} )$ $2$ \(\Q(\sqrt{-291}) \), \(\Q(\sqrt{-6}) \) $C_2$, $C_2$
2.625.ado_eyw $2$ $\F_{5^{4}}$ $( 1 - 25 x )^{2}( 1 - 42 x + 625 x^{2} )$ $1$ \(\Q\), \(\Q(\sqrt{-46}) \) Trivial, $C_2$
2.625.ado_eyx $2$ $\F_{5^{4}}$ $1 - 92 x + 3351 x^{2} - 57500 x^{3} + 390625 x^{4}$ $2$ 4.0.33123600.1 $D_{4}$
2.625.ado_eyy $2$ $\F_{5^{4}}$ $1 - 92 x + 3352 x^{2} - 57500 x^{3} + 390625 x^{4}$ $2$ 4.0.57714944.1 $D_{4}$
2.625.ado_eyz $2$ $\F_{5^{4}}$ $1 - 92 x + 3353 x^{2} - 57500 x^{3} + 390625 x^{4}$ $2$ 4.0.4665921.1 $D_{4}$
2.625.ado_eza $2$ $\F_{5^{4}}$ $1 - 92 x + 3354 x^{2} - 57500 x^{3} + 390625 x^{4}$ $2$ 4.0.1325376.2 $D_{4}$
2.625.ado_ezc $2$ $\F_{5^{4}}$ $1 - 92 x + 3356 x^{2} - 57500 x^{3} + 390625 x^{4}$ $2$ 4.0.88377600.1 $D_{4}$
2.625.ado_ezd $2$ $\F_{5^{4}}$ $( 1 - 49 x + 625 x^{2} )( 1 - 43 x + 625 x^{2} )$ $2$ \(\Q(\sqrt{-11}) \), \(\Q(\sqrt{-651}) \) $C_2$, $C_2$
2.625.ado_eze $2$ $\F_{5^{4}}$ $1 - 92 x + 3358 x^{2} - 57500 x^{3} + 390625 x^{4}$ $2$ 4.0.1178624.1 $D_{4}$
2.625.ado_ezf $2$ $\F_{5^{4}}$ $1 - 92 x + 3359 x^{2} - 57500 x^{3} + 390625 x^{4}$ $2$ 4.0.7219856.1 $D_{4}$
2.625.ado_ezh $2$ $\F_{5^{4}}$ $1 - 92 x + 3361 x^{2} - 57500 x^{3} + 390625 x^{4}$ $2$ 4.0.2533025.1 $D_{4}$
2.625.ado_ezi $2$ $\F_{5^{4}}$ $( 1 - 48 x + 625 x^{2} )( 1 - 44 x + 625 x^{2} )$ $2$ \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-141}) \) $C_2$, $C_2$
2.625.ado_ezj $2$ $\F_{5^{4}}$ $1 - 92 x + 3363 x^{2} - 57500 x^{3} + 390625 x^{4}$ $2$ 4.0.17246736.2 $D_{4}$
2.625.ado_ezk $2$ $\F_{5^{4}}$ $1 - 92 x + 3364 x^{2} - 57500 x^{3} + 390625 x^{4}$ $2$ 4.0.8255744.2 $D_{4}$
Next   displayed columns for results