Learn more

Refine search


Results (1-50 of 23249 matches)

Next   displayed columns for results
Label Dimension Base field L-polynomial $p$-rank Number fields Galois groups Isogeny factors
2.256.acm_chc $2$ $\F_{2^{8}}$ $( 1 - 16 x )^{4}$ $0$ \(\Q\) Trivial
2.256.acl_cfw $2$ $\F_{2^{8}}$ $( 1 - 16 x )^{2}( 1 - 31 x + 256 x^{2} )$ $1$ \(\Q\), \(\Q(\sqrt{-7}) \) Trivial, $C_2$
2.256.ack_cer $2$ $\F_{2^{8}}$ $( 1 - 31 x + 256 x^{2} )^{2}$ $2$ \(\Q(\sqrt{-7}) \) $C_2$
2.256.acj_cdk $2$ $\F_{2^{8}}$ $( 1 - 16 x )^{2}( 1 - 29 x + 256 x^{2} )$ $1$ \(\Q\), \(\Q(\sqrt{-183}) \) Trivial, $C_2$
2.256.acj_cdl $2$ $\F_{2^{8}}$ $1 - 61 x + 1441 x^{2} - 15616 x^{3} + 65536 x^{4}$ $2$ 4.0.97625.1 $D_{4}$
2.256.aci_ccf $2$ $\F_{2^{8}}$ $1 - 60 x + 1409 x^{2} - 15360 x^{3} + 65536 x^{4}$ $2$ 4.0.553104.2 $D_{4}$
2.256.aci_cch $2$ $\F_{2^{8}}$ $( 1 - 31 x + 256 x^{2} )( 1 - 29 x + 256 x^{2} )$ $2$ \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{-183}) \) $C_2$, $C_2$
2.256.ach_cay $2$ $\F_{2^{8}}$ $( 1 - 16 x )^{2}( 1 - 27 x + 256 x^{2} )$ $1$ \(\Q\), \(\Q(\sqrt{-295}) \) Trivial, $C_2$
2.256.ach_caz $2$ $\F_{2^{8}}$ $1 - 59 x + 1377 x^{2} - 15104 x^{3} + 65536 x^{4}$ $2$ 4.0.1665657.4 $D_{4}$
2.256.ach_cbb $2$ $\F_{2^{8}}$ $1 - 59 x + 1379 x^{2} - 15104 x^{3} + 65536 x^{4}$ $2$ 4.0.1915953.1 $D_{4}$
2.256.ach_cbd $2$ $\F_{2^{8}}$ $1 - 59 x + 1381 x^{2} - 15104 x^{3} + 65536 x^{4}$ $2$ 4.0.472625.1 $D_{4}$
2.256.acg_bzt $2$ $\F_{2^{8}}$ $1 - 58 x + 1345 x^{2} - 14848 x^{3} + 65536 x^{4}$ $2$ 4.0.237632.1 $D_{4}$
2.256.acg_bzv $2$ $\F_{2^{8}}$ $1 - 58 x + 1347 x^{2} - 14848 x^{3} + 65536 x^{4}$ $2$ 4.0.6419520.1 $D_{4}$
2.256.acg_bzx $2$ $\F_{2^{8}}$ $( 1 - 31 x + 256 x^{2} )( 1 - 27 x + 256 x^{2} )$ $2$ \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{-295}) \) $C_2$, $C_2$
2.256.acg_bzz $2$ $\F_{2^{8}}$ $1 - 58 x + 1351 x^{2} - 14848 x^{3} + 65536 x^{4}$ $2$ 4.0.1666112.1 $D_{4}$
2.256.acg_cab $2$ $\F_{2^{8}}$ $( 1 - 29 x + 256 x^{2} )^{2}$ $2$ \(\Q(\sqrt{-183}) \) $C_2$
2.256.acf_bym $2$ $\F_{2^{8}}$ $( 1 - 16 x )^{2}( 1 - 25 x + 256 x^{2} )$ $1$ \(\Q\), \(\Q(\sqrt{-399}) \) Trivial, $C_2$
2.256.acf_byn $2$ $\F_{2^{8}}$ $1 - 57 x + 1313 x^{2} - 14592 x^{3} + 65536 x^{4}$ $2$ 4.0.91225.2 $D_{4}$
2.256.acf_byp $2$ $\F_{2^{8}}$ $1 - 57 x + 1315 x^{2} - 14592 x^{3} + 65536 x^{4}$ $2$ 4.0.14994657.1 $D_{4}$
2.256.acf_byr $2$ $\F_{2^{8}}$ $1 - 57 x + 1317 x^{2} - 14592 x^{3} + 65536 x^{4}$ $2$ 4.0.15360865.2 $D_{4}$
2.256.acf_byt $2$ $\F_{2^{8}}$ $1 - 57 x + 1319 x^{2} - 14592 x^{3} + 65536 x^{4}$ $2$ 4.0.11282985.3 $D_{4}$
2.256.acf_byv $2$ $\F_{2^{8}}$ $1 - 57 x + 1321 x^{2} - 14592 x^{3} + 65536 x^{4}$ $2$ 4.0.618033.2 $D_{4}$
2.256.acf_byx $2$ $\F_{2^{8}}$ $1 - 57 x + 1323 x^{2} - 14592 x^{3} + 65536 x^{4}$ $2$ 4.0.1006225.1 $D_{4}$
2.256.ace_bxh $2$ $\F_{2^{8}}$ $1 - 56 x + 1281 x^{2} - 14336 x^{3} + 65536 x^{4}$ $2$ 4.0.12906000.2 $D_{4}$
2.256.ace_bxj $2$ $\F_{2^{8}}$ $1 - 56 x + 1283 x^{2} - 14336 x^{3} + 65536 x^{4}$ $2$ 4.0.1818609.2 $D_{4}$
2.256.ace_bxl $2$ $\F_{2^{8}}$ $1 - 56 x + 1285 x^{2} - 14336 x^{3} + 65536 x^{4}$ $2$ 4.0.34741520.2 $D_{4}$
2.256.ace_bxn $2$ $\F_{2^{8}}$ $( 1 - 31 x + 256 x^{2} )( 1 - 25 x + 256 x^{2} )$ $2$ \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{-399}) \) $C_2$, $C_2$
2.256.ace_bxp $2$ $\F_{2^{8}}$ $1 - 56 x + 1289 x^{2} - 14336 x^{3} + 65536 x^{4}$ $2$ 4.0.2816912.1 $D_{4}$
2.256.ace_bxr $2$ $\F_{2^{8}}$ $1 - 56 x + 1291 x^{2} - 14336 x^{3} + 65536 x^{4}$ $2$ 4.0.988625.1 $D_{4}$
2.256.ace_bxt $2$ $\F_{2^{8}}$ $1 - 56 x + 1293 x^{2} - 14336 x^{3} + 65536 x^{4}$ $2$ 4.0.6733584.3 $D_{4}$
2.256.ace_bxv $2$ $\F_{2^{8}}$ $( 1 - 29 x + 256 x^{2} )( 1 - 27 x + 256 x^{2} )$ $2$ \(\Q(\sqrt{-183}) \), \(\Q(\sqrt{-295}) \) $C_2$, $C_2$
2.256.acd_bwa $2$ $\F_{2^{8}}$ $( 1 - 16 x )^{2}( 1 - 23 x + 256 x^{2} )$ $1$ \(\Q\), \(\Q(\sqrt{-55}) \) Trivial, $C_2$
2.256.acd_bwb $2$ $\F_{2^{8}}$ $1 - 55 x + 1249 x^{2} - 14080 x^{3} + 65536 x^{4}$ $2$ 4.0.20876009.1 $D_{4}$
2.256.acd_bwd $2$ $\F_{2^{8}}$ $1 - 55 x + 1251 x^{2} - 14080 x^{3} + 65536 x^{4}$ $2$ 4.0.50319009.1 $D_{4}$
2.256.acd_bwf $2$ $\F_{2^{8}}$ $1 - 55 x + 1253 x^{2} - 14080 x^{3} + 65536 x^{4}$ $2$ 4.0.2623305.2 $D_{4}$
2.256.acd_bwh $2$ $\F_{2^{8}}$ $1 - 55 x + 1255 x^{2} - 14080 x^{3} + 65536 x^{4}$ $2$ 4.0.69351401.1 $D_{4}$
2.256.acd_bwj $2$ $\F_{2^{8}}$ $1 - 55 x + 1257 x^{2} - 14080 x^{3} + 65536 x^{4}$ $2$ 4.0.794025.3 $D_{4}$
2.256.acd_bwl $2$ $\F_{2^{8}}$ $1 - 55 x + 1259 x^{2} - 14080 x^{3} + 65536 x^{4}$ $2$ 4.0.53173329.1 $D_{4}$
2.256.acd_bwn $2$ $\F_{2^{8}}$ $1 - 55 x + 1261 x^{2} - 14080 x^{3} + 65536 x^{4}$ $2$ 4.0.38626289.1 $D_{4}$
2.256.acd_bwp $2$ $\F_{2^{8}}$ $1 - 55 x + 1263 x^{2} - 14080 x^{3} + 65536 x^{4}$ $2$ 4.0.23384025.1 $D_{4}$
2.256.acd_bwq $2$ $\F_{2^{8}}$ $1 - 55 x + 1264 x^{2} - 14080 x^{3} + 65536 x^{4}$ $1$ 4.0.63869.1 $D_{4}$
2.256.acd_bwr $2$ $\F_{2^{8}}$ $1 - 55 x + 1265 x^{2} - 14080 x^{3} + 65536 x^{4}$ $2$ 4.0.1129089.1 $D_{4}$
2.256.acd_bwt $2$ $\F_{2^{8}}$ $1 - 55 x + 1267 x^{2} - 14080 x^{3} + 65536 x^{4}$ $2$ 4.0.1681025.1 $D_{4}$
2.256.acc_buv $2$ $\F_{2^{8}}$ $1 - 54 x + 1217 x^{2} - 13824 x^{3} + 65536 x^{4}$ $2$ 4.0.1991232.3 $D_{4}$
2.256.acc_bux $2$ $\F_{2^{8}}$ $1 - 54 x + 1219 x^{2} - 13824 x^{3} + 65536 x^{4}$ $2$ 4.0.80359488.2 $D_{4}$
2.256.acc_buz $2$ $\F_{2^{8}}$ $1 - 54 x + 1221 x^{2} - 13824 x^{3} + 65536 x^{4}$ $2$ 4.0.432625.1 $D_{4}$
2.256.acc_bvb $2$ $\F_{2^{8}}$ $1 - 54 x + 1223 x^{2} - 13824 x^{3} + 65536 x^{4}$ $2$ 4.0.1551424.1 $D_{4}$
2.256.acc_bvd $2$ $\F_{2^{8}}$ $( 1 - 31 x + 256 x^{2} )( 1 - 23 x + 256 x^{2} )$ $2$ \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{-55}) \) $C_2$, $C_2$
2.256.acc_bvf $2$ $\F_{2^{8}}$ $1 - 54 x + 1227 x^{2} - 13824 x^{3} + 65536 x^{4}$ $2$ 4.0.119597632.1 $D_{4}$
2.256.acc_bvh $2$ $\F_{2^{8}}$ $1 - 54 x + 1229 x^{2} - 13824 x^{3} + 65536 x^{4}$ $2$ 4.0.6493968.1 $D_{4}$
Next   displayed columns for results