| Label |
Dimension |
Base field |
Base char. |
Simple |
Geom. simple |
Primitive |
Ordinary |
Almost ordinary |
Supersingular |
Princ. polarizable |
Jacobian |
L-polynomial |
Newton slopes |
Newton elevation |
$p$-rank |
$p$-corank |
Angle rank |
Angle corank |
$\mathbb{F}_q$ points on curve |
$\mathbb{F}_{q^k}$ points on curve |
$\mathbb{F}_q$ points on variety |
$\mathbb{F}_{q^k}$ points on variety |
Jacobians |
Hyperelliptic Jacobians |
Num. twists |
Max. twist degree |
End. degree |
Number fields |
Galois groups |
Isogeny factors |
| 2.193.acc_bqx |
$2$ |
$\F_{193}$ |
$193$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 27 x + 193 x^{2} )^{2}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$140$ |
$[140, 36564, 7180958, 1387401700, 267784417340, 51682536500478, 9974730364691036, 1925122954744910404, 371548729955196203294, 71708904874056045269364]$ |
$27889$ |
$[27889, 1362126649, 51624339960064, 1925003214566412201, 71708699521821883788289, 2671084788374051525146218496, 99495245462407168969893566714209, 3706098387370626121067406411017899209, 138048458715776004171299822522318801633536, 5142167038180693267082580706137784896800404249]$ |
$2$ |
$2$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-43}) \) |
$C_2$ |
1.193.abb 2 |
| 2.193.acb_bpv |
$2$ |
$\F_{193}$ |
$193$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 53 x + 1087 x^{2} - 10229 x^{3} + 37249 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$141$ |
$[141, 36615, 7182327, 1387428363, 267784818706, 51682540807695, 9974730377663787, 1925122953858875283, 371548729923281688081, 71708904873301780817950]$ |
$28055$ |
$[28055, 1364006045, 51634173782255, 1925040206770379525, 71708807001085748982000, 2671085010981832301789550005, 99495245591806833319248260306855, 3706098385664899566889491122526791525, 138048458703918206577008865846543373406855, 5142167038126605789286621858128165465899808000]$ |
$3$ |
$3$ |
$2$ |
$2$ |
$1$ |
4.0.29525.1 |
$D_{4}$ |
simple |
| 2.193.acb_bpw |
$2$ |
$\F_{193}$ |
$193$ |
|
|
✓ |
✓ |
|
|
✓ |
|
$( 1 - 27 x + 193 x^{2} )( 1 - 26 x + 193 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$141$ |
$[141, 36617, 7182486, 1387435249, 267785037861, 51682546542494, 9974730508047285, 1925122956514720801, 371548729972630550358, 71708904874146847968857]$ |
$28056$ |
$[28056, 1364082720, 51635318652288, 1925049761953718400, 71708865687914240527896, 2671085307370930312446904320, 99495246892347096065464184109912, 3706098390777728740262530482400780800, 138048458722253713680162453500685725089152, 5142167038187204629222796458466871500708493600]$ |
$0$ |
$0$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-43}) \), \(\Q(\sqrt{-6}) \) |
$C_2$, $C_2$ |
1.193.abb $\times$ 1.193.aba |
| 2.193.aca_bot |
$2$ |
$\F_{193}$ |
$193$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 52 x + 1059 x^{2} - 10036 x^{3} + 37249 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$142$ |
$[142, 36664, 7183546, 1387449076, 267785053102, 51682541464582, 9974730327083902, 1925122952140054564, 371548729885785275482, 71708904872646538119784]$ |
$28221$ |
$[28221, 1365811737, 51642930110292, 1925068943929166169, 71708869768475963786901, 2671085044931361742772659728, 99495245087286115504297160550597, 3706098382355958349535659936285458537, 138048458689986462100035752447340735747732, 5142167038079619052975076384337386375648685897]$ |
$2$ |
$2$ |
$2$ |
$2$ |
$1$ |
4.0.77328.1 |
$D_{4}$ |
simple |
| 2.193.aca_bou |
$2$ |
$\F_{193}$ |
$193$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 52 x + 1060 x^{2} - 10036 x^{3} + 37249 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$142$ |
$[142, 36666, 7183702, 1387455654, 267785255382, 51682546540506, 9974730436952206, 1925122954256869758, 371548729922805430030, 71708904873242106177946]$ |
$28222$ |
$[28222, 1365888356, 51644053293598, 1925078071649230736, 71708923936354747887742, 2671085307268089832234712612, 99495246183192836411225465758942, 3706098386431087869179382872675422208, 138048458703741253503660878781908471518366, 5142167038122326586203290819485607547955262116]$ |
$6$ |
$6$ |
$2$ |
$2$ |
$1$ |
4.0.219392.2 |
$D_{4}$ |
simple |
| 2.193.aca_bov |
$2$ |
$\F_{193}$ |
$193$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 27 x + 193 x^{2} )( 1 - 25 x + 193 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$142$ |
$[142, 36668, 7183858, 1387462228, 267785457142, 51682551580478, 9974730545058022, 1925122956304959076, 371548729957560657394, 71708904873772233393068]$ |
$28223$ |
$[28223, 1365964977, 51645176483264, 1925087193828353529, 71708977964993290916423, 2671085567746732480095338496, 99495247261519217523059925090551, 3706098390373911628629646716037475625, 138048458716654514089142721910041273983936, 5142167038160341428243253756627340113629541377]$ |
$7$ |
$7$ |
$12$ |
$6$ |
$1$ |
\(\Q(\sqrt{-43}) \), \(\Q(\sqrt{-3}) \) |
$C_2$, $C_2$ |
1.193.abb $\times$ 1.193.az |
| 2.193.aca_bow |
$2$ |
$\F_{193}$ |
$193$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 26 x + 193 x^{2} )^{2}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$142$ |
$[142, 36670, 7184014, 1387468798, 267785658382, 51682556584510, 9974730651403534, 1925122958284531198, 371548729990064897422, 71708904874237650668350]$ |
$28224$ |
$[28224, 1366041600, 51646299679296, 1925096310466560000, 71709031854391643578944, 2671085826367909941832934400, 99495248322287043712048928855616, 3706098394184831362589883395112960000, 138048458728731423189329040936600653964864, 5142167038193715991363020455926193320679040000]$ |
$29$ |
$29$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-6}) \) |
$C_2$ |
1.193.aba 2 |
| 2.193.abz_bns |
$2$ |
$\F_{193}$ |
$193$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 51 x + 1032 x^{2} - 9843 x^{3} + 37249 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$143$ |
$[143, 36713, 7184774, 1387470705, 267785337143, 51682544035454, 9974730335278439, 1925122951943928865, 371548729882682343686, 71708904872681924733113]$ |
$28388$ |
$[28388, 1367620288, 51651753544208, 1925098953201074944, 71708945830468264883588, 2671085177800605442004463616, 99495245169024428285528865699524, 3706098381978392268086641804924996608, 138048458688833571732628872547016051001872, 5142167038082156588264057462510315958977745088]$ |
$14$ |
$14$ |
$2$ |
$2$ |
$1$ |
4.0.49708.1 |
$D_{4}$ |
simple |
| 2.193.abz_bnt |
$2$ |
$\F_{193}$ |
$193$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 51 x + 1033 x^{2} - 9843 x^{3} + 37249 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$143$ |
$[143, 36715, 7184927, 1387476979, 267785523038, 51682548483835, 9974730426019271, 1925122953569111779, 371548729908683130791, 71708904873057590237950]$ |
$28389$ |
$[28389, 1367696853, 51652855050525, 1925107659024551109, 71708995610628624309504, 2671085407704292377641103525, 99495246074139766125809151266541, 3706098385107069199047505841397459909, 138048458698494131157967690198488030675525, 5142167038109095150214457818647888207987888128]$ |
$18$ |
$18$ |
$2$ |
$2$ |
$1$ |
4.0.11661.1 |
$D_{4}$ |
simple |
| 2.193.abz_bnu |
$2$ |
$\F_{193}$ |
$193$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 27 x + 193 x^{2} )( 1 - 24 x + 193 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$143$ |
$[143, 36717, 7185080, 1387483249, 267785708423, 51682552897794, 9974730515120759, 1925122955132512801, 371548729932726822680, 71708904873379222119357]$ |
$28390$ |
$[28390, 1367773420, 51653956563040, 1925116359306566400, 71709045254225812448950, 2671085635828967399515083520, 99495246962903091820294615515190, 3706098388116808392492387931668556800, 138048458707427534341758206045160801466720, 5142167038132159020202432760380568969905197100]$ |
$9$ |
$9$ |
$8$ |
$4$ |
$1$ |
\(\Q(\sqrt{-43}) \), \(\Q(\sqrt{-1}) \) |
$C_2$, $C_2$ |
1.193.abb $\times$ 1.193.ay |
| 2.193.abz_bnv |
$2$ |
$\F_{193}$ |
$193$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 51 x + 1035 x^{2} - 9843 x^{3} + 37249 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$143$ |
$[143, 36719, 7185233, 1387489515, 267785893298, 51682557277343, 9974730602585045, 1925122956634332019, 371548729954826443019, 71708904873647483475614]$ |
$28391$ |
$[28391, 1367849989, 51655058081759, 1925125054047145621, 71709094761259877212016, 2671085862175250757305152381, 99495247835335771294733059097951, 3706098391007995042460506945968929349, 138048458715638620210583547965923200028031, 5142167038151395748279475296393249830501690624]$ |
$10$ |
$10$ |
$2$ |
$2$ |
$1$ |
4.0.281725.1 |
$D_{4}$ |
simple |
| 2.193.abz_bnw |
$2$ |
$\F_{193}$ |
$193$ |
|
|
✓ |
✓ |
|
|
✓ |
|
$( 1 - 26 x + 193 x^{2} )( 1 - 25 x + 193 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$143$ |
$[143, 36721, 7185386, 1387495777, 267786077663, 51682561622494, 9974730688414271, 1925122958074769473, 371548729974995004458, 71708904873863036092561]$ |
$28392$ |
$[28392, 1367926560, 51656159606688, 1925133743246313600, 71709144131730866632872, 2671086086743762700997304320, 99495248691459170475365098881768, 3706098393781014250585761146952000000, 138048458723132223598046575601804495201952, 5142167038166852790383443738071910867359712800]$ |
$0$ |
$0$ |
$12$ |
$6$ |
$1$ |
\(\Q(\sqrt{-6}) \), \(\Q(\sqrt{-3}) \) |
$C_2$, $C_2$ |
1.193.aba $\times$ 1.193.az |
| 2.193.aby_bmq |
$2$ |
$\F_{193}$ |
$193$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 50 x + 1004 x^{2} - 9650 x^{3} + 37249 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$144$ |
$[144, 36758, 7185708, 1387480966, 267785310444, 51682539924902, 9974730224919408, 1925122949971935358, 371548729856772684144, 71708904872456061481478]$ |
$28554$ |
$[28554, 1369278516, 51658462504026, 1925113189104626256, 71708938680754973295114, 2671084965356846386654512276, 99495244068222864193957470472026, 3706098378182062307431343748352742400, 138048458679206870637857867108133323213754, 5142167038065960181838278303447838708336982996]$ |
$8$ |
$8$ |
$2$ |
$2$ |
$1$ |
4.0.1646400.3 |
$D_{4}$ |
simple |
| 2.193.aby_bmr |
$2$ |
$\F_{193}$ |
$193$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 50 x + 1005 x^{2} - 9650 x^{3} + 37249 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$144$ |
$[144, 36760, 7185858, 1387486948, 267785481444, 51682543843030, 9974730300983508, 1925122951265372548, 371548729876541564994, 71708904872735620403800]$ |
$28555$ |
$[28555, 1369355025, 51659542330540, 1925121489680375625, 71708984472197459180275, 2671085167855687460897139600, 99495244826941750801244560319635, 3706098380672087928777414732997775625, 138048458686551973208900893635529025696620, 5142167038086007046005393152173253127092500625]$ |
$16$ |
$16$ |
$2$ |
$2$ |
$1$ |
4.0.2811456.1 |
$D_{4}$ |
simple |
| 2.193.aby_bms |
$2$ |
$\F_{193}$ |
$193$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 50 x + 1006 x^{2} - 9650 x^{3} + 37249 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$144$ |
$[144, 36762, 7186008, 1387492926, 267785651944, 51682547728218, 9974730375523008, 1925122952503205118, 371548729894612587744, 71708904872970152386522]$ |
$28556$ |
$[28556, 1369431536, 51660622163084, 1925129784714135296, 71709030129753846498636, 2671085368652109410735110256, 99495245570453165211593139774284, 3706098383055067820446541198524313600, 138048458693266238759470530648260948068556, 5142167038102825077644026971470552316846128496]$ |
$24$ |
$24$ |
$2$ |
$2$ |
$1$ |
4.0.191600.1 |
$D_{4}$ |
simple |
| 2.193.aby_bmt |
$2$ |
$\F_{193}$ |
$193$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 27 x + 193 x^{2} )( 1 - 23 x + 193 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$144$ |
$[144, 36764, 7186158, 1387498900, 267785821944, 51682551580478, 9974730448540008, 1925122953685624804, 371548729910997914094, 71708904873160259068364]$ |
$28557$ |
$[28557, 1369508049, 51661702001664, 1925138074205929401, 71709075653424180319557, 2671085567746732480095338496, 99495246298778054404532289871893, 3706098385331371097843764156062122409, 138048458699354185953771849657436052468736, 5142167038116457419607927719289613476271697249]$ |
$26$ |
$26$ |
$12$ |
$6$ |
$1$ |
\(\Q(\sqrt{-43}) \), \(\Q(\sqrt{-3}) \) |
$C_2$, $C_2$ |
1.193.abb $\times$ 1.193.ax |
| 2.193.aby_bmu |
$2$ |
$\F_{193}$ |
$193$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 50 x + 1008 x^{2} - 9650 x^{3} + 37249 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$144$ |
$[144, 36766, 7186308, 1387504870, 267785991444, 51682555399822, 9974730520036608, 1925122954812823294, 371548729925709694944, 71708904873306540829486]$ |
$28558$ |
$[28558, 1369584564, 51662781846286, 1925146358155782096, 71709121043208505833118, 2671085765140176913194227796, 99495247011937365360038383859902, 3706098387501366783968727852792443904, 138048458704820329443284085546638526194014, 5142167038126947124500884359042411389853467924]$ |
$16$ |
$16$ |
$2$ |
$2$ |
$1$ |
4.0.1905984.1 |
$D_{4}$ |
simple |
| 2.193.aby_bmv |
$2$ |
$\F_{193}$ |
$193$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 50 x + 1009 x^{2} - 9650 x^{3} + 37249 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$144$ |
$[144, 36768, 7186458, 1387510836, 267786160444, 51682559186262, 9974730590014908, 1925122955884992228, 371548729938760070394, 71708904873409596791728]$ |
$28559$ |
$[28559, 1369661081, 51663861696956, 1925154636563717561, 71709166299106868350239, 2671085960833062954538395536, 99495247709952045058537203475631, 3706098389565423809415683789431613225, 138048458709669179866760642179015877364284, 5142167038134337154693937002930994109651742121]$ |
$8$ |
$8$ |
$2$ |
$2$ |
$1$ |
4.0.1025600.4 |
$D_{4}$ |
simple |
| 2.193.aby_bmw |
$2$ |
$\F_{193}$ |
$193$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 26 x + 193 x^{2} )( 1 - 24 x + 193 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$144$ |
$[144, 36770, 7186608, 1387516798, 267786328944, 51682562939810, 9974730658477008, 1925122956902323198, 371548729950161169744, 71708904873470024818850]$ |
$28560$ |
$[28560, 1369737600, 51664941553680, 1925162909429760000, 71709211421119313302800, 2671086154826010848925398400, 99495248392843040480906060299920, 3706098391523911012373494755164160000, 138048458713905243850229098043590135505040, 5142167038138670382342587055340555582531440000]$ |
$36$ |
$36$ |
$8$ |
$4$ |
$1$ |
\(\Q(\sqrt{-6}) \), \(\Q(\sqrt{-1}) \) |
$C_2$, $C_2$ |
1.193.aba $\times$ 1.193.ay |
| 2.193.aby_bmx |
$2$ |
$\F_{193}$ |
$193$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 25 x + 193 x^{2} )^{2}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$144$ |
$[144, 36772, 7186758, 1387522756, 267786496944, 51682566660478, 9974730725425008, 1925122957865007748, 371548729959925111494, 71708904873488421516772]$ |
$28561$ |
$[28561, 1369814121, 51666021416464, 1925171176753933641, 71709256409245886243761, 2671086347119640841444458496, 99495249060631298608475922191089, 3706098393377197138625638880066015625, 138048458717533024006991211940954753144336, 5142167038139989589404007356298021986465358121]$ |
$12$ |
$12$ |
$24$ |
$12$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
1.193.az 2 |
| 2.193.abx_blo |
$2$ |
$\F_{193}$ |
$193$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 49 x + 976 x^{2} - 9457 x^{3} + 37249 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$145$ |
$[145, 36801, 7186510, 1387486977, 267785199825, 51682534943934, 9974730121305745, 1925122948545500673, 371548729845256894030, 71708904872483231760961]$ |
$28720$ |
$[28720, 1370863040, 51664223272960, 1925121528557561600, 71708909058631420711600, 2671084707927805879915642880, 99495243034704531304367670030640, 3706098375436000157313151608437120000, 138048458674928193447410113118178679521280, 5142167038067908532825108961404879635670155200]$ |
$14$ |
$14$ |
$2$ |
$2$ |
$1$ |
4.0.154652.1 |
$D_{4}$ |
simple |
| 2.193.abx_blp |
$2$ |
$\F_{193}$ |
$193$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 49 x + 977 x^{2} - 9457 x^{3} + 37249 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$145$ |
$[145, 36803, 7186657, 1387492675, 267785356870, 51682538388899, 9974730185070817, 1925122949582793475, 371548729860719730097, 71708904872706553920638]$ |
$28721$ |
$[28721, 1370939493, 51665281423217, 1925129434993236549, 71708951113082119874576, 2671084885972362694611761061, 99495243670743925502039459664593, 3706098377432916337250006047460303493, 138048458680673390548370024590979821973201, 5142167038083922720329381730354984425266085888]$ |
$16$ |
$16$ |
$2$ |
$2$ |
$1$ |
4.0.5745693.1 |
$D_{4}$ |
simple |
| 2.193.abx_blq |
$2$ |
$\F_{193}$ |
$193$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 49 x + 978 x^{2} - 9457 x^{3} + 37249 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$145$ |
$[145, 36805, 7186804, 1387498369, 267785513425, 51682541802370, 9974730247419985, 1925122950570133249, 371548729874712505012, 71708904872892405475525]$ |
$28722$ |
$[28722, 1371015948, 51666339579336, 1925137335886408704, 71708993036323845168882, 2671085062389232685249740800, 99495244292660060367489895051698, 3706098379333666796779308738555654144, 138048458685872388295481042495765884394184, 5142167038097249931799228255258737997414454028]$ |
$16$ |
$16$ |
$2$ |
$2$ |
$1$ |
4.0.7540236.1 |
$D_{4}$ |
simple |
| 2.193.abx_blr |
$2$ |
$\F_{193}$ |
$193$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 49 x + 979 x^{2} - 9457 x^{3} + 37249 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$145$ |
$[145, 36807, 7186951, 1387504059, 267785669490, 51682545184359, 9974730308355307, 1925122951507703571, 371548729887246560413, 71708904873041331319582]$ |
$28723$ |
$[28723, 1371092405, 51667397741323, 1925145231237101525, 71709034828356638905648, 2671085237179036090366085405, 99495244900473463934797616278219, 3706098381138604942296595410211777925, 138048458690529400659949250917177165566427, 5142167038107929240983797021167086693144454400]$ |
$20$ |
$20$ |
$2$ |
$2$ |
$1$ |
4.0.8118173.3 |
$D_{4}$ |
simple |
| 2.193.abx_bls |
$2$ |
$\F_{193}$ |
$193$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 27 x + 193 x^{2} )( 1 - 22 x + 193 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$145$ |
$[145, 36809, 7187098, 1387509745, 267785825065, 51682548534878, 9974730367878841, 1925122952395687969, 371548729898333227354, 71708904873153875140889]$ |
$28724$ |
$[28724, 1371168864, 51668455909184, 1925153121045338496, 71709076489180543513364, 2671085410342393148769540096, 99495245494204664238445797681044, 3706098382848084087791936218884539904, 138048458694648637680509341715817344634176, 5142167038115999635159902551988748953147587424]$ |
$27$ |
$27$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-43}) \), \(\Q(\sqrt{-2}) \) |
$C_2$, $C_2$ |
1.193.abb $\times$ 1.193.aw |
| 2.193.abx_blt |
$2$ |
$\F_{193}$ |
$193$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 49 x + 981 x^{2} - 9457 x^{3} + 37249 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$145$ |
$[145, 36811, 7187245, 1387515427, 267785980150, 51682551853939, 9974730425992645, 1925122953234269923, 371548729907983826305, 71708904873230579421886]$ |
$28725$ |
$[28725, 1371245325, 51669514082925, 1925161005311143125, 71709118018795601538000, 2671085581879924099541796525, 99495246073874189313324140114325, 3706098384462457454849939394833953125, 138048458698234305463424619408050850774525, 5142167038121500015149235552768992545972736000]$ |
$20$ |
$20$ |
$2$ |
$2$ |
$1$ |
4.0.6666597.1 |
$D_{4}$ |
simple |
| 2.193.abx_blu |
$2$ |
$\F_{193}$ |
$193$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 49 x + 982 x^{2} - 9457 x^{3} + 37249 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$145$ |
$[145, 36813, 7187392, 1387521105, 267786134745, 51682555141554, 9974730482698777, 1925122954023632865, 371548729916209667152, 71708904873271985439613]$ |
$28726$ |
$[28726, 1371321788, 51670572262552, 1925168884034538944, 71709159417201855643126, 2671085751792249182038198016, 99495246639502567194730868150278, 3706098385982078172649754904399550208, 138048458701290606182487006081476382684376, 5142167038124469195335573052025340052802062588]$ |
$12$ |
$12$ |
$2$ |
$2$ |
$1$ |
4.0.5159228.1 |
$D_{4}$ |
simple |
| 2.193.abx_blv |
$2$ |
$\F_{193}$ |
$193$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 49 x + 983 x^{2} - 9457 x^{3} + 37249 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$145$ |
$[145, 36815, 7187539, 1387526779, 267786288850, 51682558397735, 9974730537999295, 1925122954763960179, 371548729923022049197, 71708904873278633265950]$ |
$28727$ |
$[28727, 1371398253, 51671630448071, 1925176757215549509, 71709200684399348610032, 2671085920079988635888445525, 99495247191110325918374732219183, 3706098387407299277965078128753731109, 138048458703821738079017046346227946078439, 5142167038124945903681988544140582266220496128]$ |
$20$ |
$20$ |
$2$ |
$2$ |
$1$ |
4.0.3479541.1 |
$D_{4}$ |
simple |
| 2.193.abx_blw |
$2$ |
$\F_{193}$ |
$193$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 26 x + 193 x^{2} )( 1 - 23 x + 193 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$145$ |
$[145, 36817, 7187686, 1387532449, 267786442465, 51682561622494, 9974730591896257, 1925122955455435201, 371548729928432261158, 71708904873251061767857]$ |
$28728$ |
$[28728, 1371474720, 51672688639488, 1925184624854198400, 71709241820388123337848, 2671086086743762700997304320, 99495247728717993520377015693624, 3706098388738473715164153559172620800, 138048458705831895461863912322255133015552, 5142167038122968781748062131813480701083693600]$ |
$27$ |
$27$ |
$12$ |
$6$ |
$1$ |
\(\Q(\sqrt{-6}) \), \(\Q(\sqrt{-3}) \) |
$C_2$, $C_2$ |
1.193.aba $\times$ 1.193.ax |
| 2.193.abx_blx |
$2$ |
$\F_{193}$ |
$193$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 49 x + 985 x^{2} - 9457 x^{3} + 37249 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$145$ |
$[145, 36819, 7187833, 1387538115, 267786595590, 51682564815843, 9974730644391721, 1925122956098241219, 371548729932451581169, 71708904873189808607614]$ |
$28729$ |
$[28729, 1371551189, 51673746836809, 1925192486950509221, 71709282825168222843664, 2671086251784191617545311381, 99495248252346098037273546922009, 3706098389975954336209778508864010949, 138048458707325268707405408662734722855881, 5142167038118576384707090668567541959839514624]$ |
$10$ |
$10$ |
$2$ |
$2$ |
$1$ |
4.0.651725.1 |
$D_{4}$ |
simple |
| 2.193.abx_bly |
$2$ |
$\F_{193}$ |
$193$ |
|
|
✓ |
✓ |
|
|
✓ |
|
$( 1 - 25 x + 193 x^{2} )( 1 - 24 x + 193 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$145$ |
$[145, 36821, 7187980, 1387543777, 267786748225, 51682567977794, 9974730695487745, 1925122956692561473, 371548729935091276780, 71708904873095410243061]$ |
$28730$ |
$[28730, 1371627660, 51674805040040, 1925200343504505600, 71709323698739690262650, 2671086415201895625989483520, 99495248762015167506016716216410, 3706098391120093900659306841392000000, 138048458708306044259547977613766040999720, 5142167038111807181363297901318248242469868300]$ |
$0$ |
$0$ |
$24$ |
$12$ |
$1$ |
\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-1}) \) |
$C_2$, $C_2$ |
1.193.az $\times$ 1.193.ay |
| 2.193.abw_bkm |
$2$ |
$\F_{193}$ |
$193$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 48 x + 948 x^{2} - 9264 x^{3} + 37249 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$146$ |
$[146, 36842, 7187186, 1387489254, 267785027186, 51682529681354, 9974730034518290, 1925122947729218686, 371548729845751675538, 71708904872657998588682]$ |
$28886$ |
$[28886, 1372373860, 51669078950918, 1925124687459859600, 71708862828564593649446, 2671084435944357955538276260, 99495242169023085972128906008502, 3706098373864556970033512033996083200, 138048458675112028888295571180663169320182, 5142167038080440870649076506965438990901547300]$ |
$16$ |
$16$ |
$2$ |
$2$ |
$1$ |
4.0.2722048.1 |
$D_{4}$ |
simple |
| 2.193.abw_bkn |
$2$ |
$\F_{193}$ |
$193$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 48 x + 949 x^{2} - 9264 x^{3} + 37249 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$146$ |
$[146, 36844, 7187330, 1387494676, 267785171186, 51682532706142, 9974730088074674, 1925122948572321124, 371548729858344850946, 71708904872851032565084]$ |
$28887$ |
$[28887, 1372450257, 51670115428464, 1925132210862845049, 71708901389715393421647, 2671084592273086214623527168, 99495242703233567604911231167263, 3706098375487632822867720785491008297, 138048458679791007216272817652897096943088, 5142167038094283125700168257933411335193220897]$ |
$40$ |
$40$ |
$2$ |
$2$ |
$1$ |
4.0.66417.2 |
$D_{4}$ |
simple |
| 2.193.abw_bko |
$2$ |
$\F_{193}$ |
$193$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 48 x + 950 x^{2} - 9264 x^{3} + 37249 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$146$ |
$[146, 36846, 7187474, 1387500094, 267785314706, 51682535700846, 9974730140317970, 1925122949370627838, 371548729869667333778, 71708904873012899182446]$ |
$28888$ |
$[28888, 1372526656, 51671151911704, 1925139728722830336, 71708939822334394340248, 2671084747046999455173731392, 99495243224346351430861583172184, 3706098377024471399442883610134069248, 138048458683997861331544807726236134956888, 5142167038105890403566700086225741518220106816]$ |
$28$ |
$28$ |
$2$ |
$2$ |
$1$ |
4.0.223488.1 |
$D_{4}$ |
simple |
| 2.193.abw_bkp |
$2$ |
$\F_{193}$ |
$193$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 48 x + 951 x^{2} - 9264 x^{3} + 37249 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$146$ |
$[146, 36848, 7187618, 1387505508, 267785457746, 51682538665478, 9974730191250194, 1925122950124314436, 371548729879729686434, 71708904873144091049168]$ |
$28889$ |
$[28889, 1372603057, 51672188400644, 1925147241039838249, 71708978126421636040649, 2671084900266717910685268496, 99495243732381546539325676357097, 3706098378475410766769590423387694025, 138048458687736515680424913571597015028996, 5142167038115298028657570317956440989062360977]$ |
$14$ |
$14$ |
$2$ |
$2$ |
$1$ |
4.0.17193616.1 |
$D_{4}$ |
simple |
| 2.193.abw_bkq |
$2$ |
$\F_{193}$ |
$193$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 48 x + 952 x^{2} - 9264 x^{3} + 37249 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$146$ |
$[146, 36850, 7187762, 1387510918, 267785600306, 51682541600050, 9974730240873362, 1925122950833556478, 371548729888542460946, 71708904873245099619250]$ |
$28890$ |
$[28890, 1372679460, 51673224895290, 1925154747813891600, 71709016301977158272250, 2671085051932861814910021540, 99495244227359262020013683985690, 3706098379840788899452903641725337600, 138048458691010890857009571047801225160090, 5142167038122541242600917679806266810857166500]$ |
$60$ |
$60$ |
$2$ |
$2$ |
$1$ |
4.0.2054400.4 |
$D_{4}$ |
simple |
| 2.193.abw_bkr |
$2$ |
$\F_{193}$ |
$193$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 27 x + 193 x^{2} )( 1 - 21 x + 193 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$146$ |
$[146, 36852, 7187906, 1387516324, 267785742386, 51682544504574, 9974730289189490, 1925122951498529476, 371548729896116198978, 71708904873316415192532]$ |
$28891$ |
$[28891, 1372755865, 51674261395648, 1925162249045013225, 71709054349001000898571, 2671085202046051401856061440, 99495244709299606963002110133547, 3706098381120943679692361479619466825, 138048458693824903603178283924213884362432, 5142167038127655204261331440393568199177536825]$ |
$33$ |
$33$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-43}) \), \(\Q(\sqrt{-331}) \) |
$C_2$, $C_2$ |
1.193.abb $\times$ 1.193.av |
| 2.193.abw_bks |
$2$ |
$\F_{193}$ |
$193$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 48 x + 954 x^{2} - 9264 x^{3} + 37249 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$146$ |
$[146, 36854, 7188050, 1387521726, 267785883986, 51682547379062, 9974730336200594, 1925122952119408894, 371548729902461431826, 71708904873358526914934]$ |
$28892$ |
$[28892, 1372832272, 51675297901724, 1925169744733225984, 71709092267493203897372, 2671085350606906905788332048, 99495245178222690458735666363228, 3706098382316212897281981261986414592, 138048458696182466808593628135724115152988, 5142167038130674989757061551694660608969184272]$ |
$96$ |
$96$ |
$2$ |
$2$ |
$1$ |
4.0.67648.1 |
$D_{4}$ |
simple |
| 2.193.abw_bkt |
$2$ |
$\F_{193}$ |
$193$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 48 x + 955 x^{2} - 9264 x^{3} + 37249 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$146$ |
$[146, 36856, 7188194, 1387527124, 267786025106, 51682550223526, 9974730381908690, 1925122952696370148, 371548729907588680418, 71708904873371922778696]$ |
$28893$ |
$[28893, 1372908681, 51676334413524, 1925177234878552761, 71709130057453807360773, 2671085497616048561229335952, 99495245634148621598029153197429, 3706098383426934249610262752126467753, 138048458698087489510701256070209321142868, 5142167038131635592477228790514072135918138841]$ |
$24$ |
$24$ |
$2$ |
$2$ |
$1$ |
4.0.15360912.1 |
$D_{4}$ |
simple |
| 2.193.abw_bku |
$2$ |
$\F_{193}$ |
$193$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 48 x + 956 x^{2} - 9264 x^{3} + 37249 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$146$ |
$[146, 36858, 7188338, 1387532518, 267786165746, 51682553037978, 9974730426315794, 1925122953229588606, 371548729911508455314, 71708904873357089622618]$ |
$28894$ |
$[28894, 1372985092, 51677370931054, 1925184719481016464, 71709167718882851495374, 2671085643074096602959820996, 99495246077097509472069346395262, 3706098384453445341660191495197593600, 138048458699543876894729900888626122466366, 5142167038130571923099034900005008448210442052]$ |
$24$ |
$24$ |
$2$ |
$2$ |
$1$ |
4.0.12830976.1 |
$D_{4}$ |
simple |
| 2.193.abw_bkv |
$2$ |
$\F_{193}$ |
$193$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 48 x + 957 x^{2} - 9264 x^{3} + 37249 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$146$ |
$[146, 36860, 7188482, 1387537908, 267786305906, 51682555822430, 9974730469423922, 1925122953719239588, 371548729914231256706, 71708904873314513132300]$ |
$28895$ |
$[28895, 1373061505, 51678407454320, 1925192198540640025, 71709205251780376622375, 2671085786981671266019467520, 99495246507089463172416888036695, 3706098385396083686009242177261250025, 138048458700555530293691380877871047617520, 5142167038127518809604972731240383918190312625]$ |
$72$ |
$72$ |
$2$ |
$2$ |
$1$ |
4.0.624025.2 |
$D_{4}$ |
simple |
| 2.193.abw_bkw |
$2$ |
$\F_{193}$ |
$193$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 26 x + 193 x^{2} )( 1 - 22 x + 193 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$146$ |
$[146, 36862, 7188626, 1387543294, 267786445586, 51682558576894, 9974730511235090, 1925122954165498366, 371548729915767574418, 71708904873244677840382]$ |
$28896$ |
$[28896, 1373137920, 51679443983328, 1925199672057446400, 71709242656146423177696, 2671085929339392785707576320, 99495246924144591791008182420192, 3706098386255186702829381999938764800, 138048458701126347188380603836554426449632, 5142167038122510997300036384834768080428313600]$ |
$132$ |
$132$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-6}) \), \(\Q(\sqrt{-2}) \) |
$C_2$, $C_2$ |
1.193.aba $\times$ 1.193.aw |
| 2.193.abw_bkx |
$2$ |
$\F_{193}$ |
$193$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 48 x + 959 x^{2} - 9264 x^{3} + 37249 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$146$ |
$[146, 36864, 7188770, 1387548676, 267786584786, 51682561301382, 9974730551751314, 1925122954568540164, 371548729916127887906, 71708904873148067126784]$ |
$28897$ |
$[28897, 1373214337, 51680480518084, 1925207140031458569, 71709279931981031712097, 2671086070147881397583757328, 99495247328283004420157296778593, 3706098387031091719887074070716809737, 138048458701260221207375571493831275643588, 5142167038115583148828931352617598003179872897]$ |
$16$ |
$16$ |
$2$ |
$2$ |
$1$ |
4.0.4368528.2 |
$D_{4}$ |
simple |
| 2.193.abw_bky |
$2$ |
$\F_{193}$ |
$193$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 48 x + 960 x^{2} - 9264 x^{3} + 37249 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$146$ |
$[146, 36866, 7188914, 1387554054, 267786723506, 51682563995906, 9974730590974610, 1925122954928540158, 371548729915322666258, 71708904873025163218946]$ |
$28898$ |
$[28898, 1373290756, 51681517058594, 1925214602462699536, 71709317079284242891298, 2671086209407757337468619012, 99495247719524810152557866818274, 3706098387724135972543280808940535808, 138048458700961042127037383961433314864098, 5142167038106769844193284659358008624150650116]$ |
$20$ |
$20$ |
$2$ |
$2$ |
$1$ |
4.0.2113792.1 |
$D_{4}$ |
simple |
| 2.193.abw_bkz |
$2$ |
$\F_{193}$ |
$193$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 25 x + 193 x^{2} )( 1 - 23 x + 193 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$146$ |
$[146, 36868, 7189058, 1387559428, 267786861746, 51682566660478, 9974730628906994, 1925122955245673476, 371548729913362368194, 71708904872876447192068]$ |
$28899$ |
$[28899, 1373367177, 51682553604864, 1925222059351192329, 71709354098056097496099, 2671086347119640841444458496, 99495248097890118081285007086627, 3706098388334656603753467367532975625, 138048458700232695871510244219046599099136, 5142167038096105580768855004541634568892330377]$ |
$31$ |
$31$ |
$24$ |
$12$ |
$6$ |
\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-3}) \) |
$C_2$, $C_2$ |
1.193.az $\times$ 1.193.ax |
| 2.193.abw_bla |
$2$ |
$\F_{193}$ |
$193$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 24 x + 193 x^{2} )^{2}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$146$ |
$[146, 36870, 7189202, 1387564798, 267786999506, 51682569295110, 9974730665550482, 1925122955520115198, 371548729910257442066, 71708904872702398969350]$ |
$28900$ |
$[28900, 1373443600, 51683590156900, 1925229510696960000, 71709390988296636422500, 2671086483284152145855952400, 99495248463399037299797226172900, 3706098388862990664067605070479360000, 138048458699079064512721462633179600316900, 5142167038083624773322742904199738441034090000]$ |
$34$ |
$34$ |
$16$ |
$12$ |
$1$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
1.193.ay 2 |
| 2.193.abv_bjk |
$2$ |
$\F_{193}$ |
$193$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 47 x + 920 x^{2} - 9071 x^{3} + 37249 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$147$ |
$[147, 36881, 7187742, 1387488289, 267784811907, 51682524595166, 9974729970290211, 1925122947490429633, 371548729854626170590, 71708904872880182731121]$ |
$29052$ |
$[29052, 1373810976, 51673072637808, 1925123348413800576, 71708805180205990669692, 2671084173077302902654246912, 99495241528365330198470936844732, 3706098373404858683839274351222358528, 138048458678409336253148307271439635810416, 5142167038096373452183452820253481216828381216]$ |
$9$ |
$9$ |
$2$ |
$2$ |
$1$ |
4.0.42632.1 |
$D_{4}$ |
simple |
| 2.193.abv_bjl |
$2$ |
$\F_{193}$ |
$193$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 47 x + 921 x^{2} - 9071 x^{3} + 37249 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$147$ |
$[147, 36883, 7187883, 1387493443, 267784943742, 51682527248803, 9974730015463227, 1925122948189409731, 371548729865390021619, 71708904873058670709118]$ |
$29053$ |
$[29053, 1373887317, 51674087446189, 1925130499891213989, 71708840483714602651648, 2671084310223994760780534421, 99495241978953975588177218857021, 3706098374750481312206061287872611525, 138048458682408631431722239149415792242061, 5142167038109172629618696537913117995536023552]$ |
$12$ |
$12$ |
$2$ |
$2$ |
$1$ |
4.0.13811661.1 |
$D_{4}$ |
simple |
| 2.193.abv_bjm |
$2$ |
$\F_{193}$ |
$193$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 47 x + 922 x^{2} - 9071 x^{3} + 37249 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$147$ |
$[147, 36885, 7188024, 1387498593, 267785075107, 51682529873730, 9974730059420259, 1925122948848287553, 371548729875056935512, 71708904873211218207925]$ |
$29054$ |
$[29054, 1373963660, 51675102260096, 1925137645825145600, 71708875661368639450494, 2671084445886882905456675840, 99495242417413509102654648416606, 3706098376018902128673467693921561600, 138048458686000361010606472177727703703424, 5142167038120111643699323106439582261663871500]$ |
$20$ |
$20$ |
$2$ |
$2$ |
$1$ |
4.0.23305100.1 |
$D_{4}$ |
simple |
| 2.193.abv_bjn |
$2$ |
$\F_{193}$ |
$193$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 47 x + 923 x^{2} - 9071 x^{3} + 37249 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$147$ |
$[147, 36887, 7188165, 1387503739, 267785206002, 51682532469959, 9974730102163281, 1925122949467230931, 371548729883636735175, 71708904873338269761182]$ |
$29055$ |
$[29055, 1374040005, 51676117079535, 1925144786215617525, 71708910713168138108400, 2671084580066587565478077805, 99495242843763620887184413567695, 3706098377210444230491591851302361925, 138048458689188174678055166902231833930855, 5142167038129222371445837886030778930081926400]$ |
$26$ |
$26$ |
$2$ |
$2$ |
$1$ |
4.0.30262893.1 |
$D_{4}$ |
simple |