| Label |
Dimension |
Base field |
Base char. |
Simple |
Geom. simple |
Primitive |
Ordinary |
Almost ordinary |
Supersingular |
Princ. polarizable |
Jacobian |
L-polynomial |
Newton slopes |
Newton elevation |
$p$-rank |
$p$-corank |
Angle rank |
Angle corank |
$\mathbb{F}_q$ points on curve |
$\mathbb{F}_{q^k}$ points on curve |
$\mathbb{F}_q$ points on variety |
$\mathbb{F}_{q^k}$ points on variety |
Jacobians |
Hyperelliptic Jacobians |
Num. twists |
Max. twist degree |
End. degree |
Number fields |
Galois groups |
Isogeny factors |
| 2.191.acc_bqt |
$2$ |
$\F_{191}$ |
$191$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 27 x + 191 x^{2} )^{2}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$138$ |
$[138, 35788, 6959448, 1330768468, 254193948798, 48551218662238, 9273284194645938, 1771197286473234148, 338298681586215640968, 64615048178441031940348]$ |
$27225$ |
$[27225, 1305738225, 48492560595600, 1771070999617287225, 64614805891726443890625, 2357221203082850641860153600, 85993799971929246179605953234225, 3137139826155963327995358875105805225, 114445997953958654618696112909091895139600, 4175104451065907924431860347062909205358890625]$ |
$5$ |
$5$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-35}) \) |
$C_2$ |
1.191.abb 2 |
| 2.191.acb_bpr |
$2$ |
$\F_{191}$ |
$191$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 53 x + 1083 x^{2} - 10123 x^{3} + 36481 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$139$ |
$[139, 35839, 6960823, 1330795539, 254194365804, 48551223409363, 9273284217551269, 1771197285772244499, 338298681557075638093, 64615048177715295394254]$ |
$27389$ |
$[27389, 1307578249, 48502133155475, 1771107024866409149, 64614911891852335078384, 2357221433561431885089397225, 85993800184336856401664715420239, 3137139824914372357573477299909048149, 114445997944100630064167549228390492513225, 4175104451019014422541328004456339766516195584]$ |
$1$ |
$1$ |
$2$ |
$2$ |
$1$ |
4.0.3725.1 |
$D_{4}$ |
simple |
| 2.191.acb_bps |
$2$ |
$\F_{191}$ |
$191$ |
|
|
✓ |
✓ |
|
|
✓ |
|
$( 1 - 27 x + 191 x^{2} )( 1 - 26 x + 191 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$139$ |
$[139, 35841, 6960982, 1330802441, 254194586549, 48551229231498, 9273284351441459, 1771197288542903281, 338298681609668585002, 64615048178642180519001]$ |
$27390$ |
$[27390, 1307653380, 48503242850040, 1771116211426367520, 64614968004475421222250, 2357221716233344218075048000, 85993801425938674696922673965610, 3137139829821755679412752395845476480, 114445997961892754664401194219749895590360, 4175104451078905149532492301467672141225654500]$ |
$0$ |
$0$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-35}) \), \(\Q(\sqrt{-22}) \) |
$C_2$, $C_2$ |
1.191.abb $\times$ 1.191.aba |
| 2.191.aca_boq |
$2$ |
$\F_{191}$ |
$191$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 52 x + 1056 x^{2} - 9932 x^{3} + 36481 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$140$ |
$[140, 35890, 6962204, 1330823238, 254194818180, 48551229589618, 9273284287283156, 1771197286380083454, 338298681560338287596, 64615048177716028815090]$ |
$27554$ |
$[27554, 1309421188, 48511750095746, 1771143887259580688, 64615026883385448761794, 2357221733620401461778092548, 85993800830980474943173177986914, 3137139825990975068538543245031391232, 114445997945204380090285217468755161476834, 4175104451019061812564125558087986967299701508]$ |
$4$ |
$4$ |
$2$ |
$2$ |
$1$ |
4.0.127232.1 |
$D_{4}$ |
simple |
| 2.191.aca_bor |
$2$ |
$\F_{191}$ |
$191$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 27 x + 191 x^{2} )( 1 - 25 x + 191 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$140$ |
$[140, 35892, 6962360, 1330829828, 254195021500, 48551234713182, 9273284398643860, 1771197288530880388, 338298681597872176040, 64615048178312792561652]$ |
$27555$ |
$[27555, 1309496265, 48512838773520, 1771152658481831625, 64615078566594932503875, 2357221982375803598281416960, 85993801863659954392502876769795, 3137139829800460763960529859056671625, 114445997957902045065261917529742477537680, 4175104451057621730799081031727027952027871625]$ |
$18$ |
$18$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-35}) \), \(\Q(\sqrt{-139}) \) |
$C_2$, $C_2$ |
1.191.abb $\times$ 1.191.az |
| 2.191.aca_bos |
$2$ |
$\F_{191}$ |
$191$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 26 x + 191 x^{2} )^{2}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$140$ |
$[140, 35894, 6962516, 1330836414, 254195224300, 48551239800758, 9273284508236980, 1771197290612572414, 338298681633121529036, 64615048178843329097654]$ |
$27556$ |
$[27556, 1309571344, 48513927457636, 1771161424389612544, 64615130117631124891876, 2357222229383949503546890000, 85993802879948127799074800358436, 3137139833487548035113676236678119424, 114445997969826854710656316114269832234276, 4175104451091902374633164716623129199219712784]$ |
$8$ |
$8$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-22}) \) |
$C_2$ |
1.191.aba 2 |
| 2.191.abz_bno |
$2$ |
$\F_{191}$ |
$191$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 51 x + 1028 x^{2} - 9741 x^{3} + 36481 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$141$ |
$[141, 35937, 6963282, 1330838665, 254194912611, 48551227375722, 9273284190248373, 1771197284103921649, 338298681519571728942, 64615048177118774421177]$ |
$27718$ |
$[27718, 1311116836, 48519254825752, 1771164416850588576, 64615050886962155727298, 2357221626132998760043215424, 85993799931149352921344523081922, 3137139821959443459332799921150885504, 114445997931413107046476929390998695144312, 4175104450980470191127129159624398411299113476]$ |
$4$ |
$4$ |
$2$ |
$2$ |
$1$ |
4.0.270504.1 |
$D_{4}$ |
simple |
| 2.191.abz_bnp |
$2$ |
$\F_{191}$ |
$191$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 51 x + 1029 x^{2} - 9741 x^{3} + 36481 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$141$ |
$[141, 35939, 6963435, 1330844955, 254195100036, 48551231904095, 9273284284013709, 1771197285821396323, 338298681547979662599, 64615048177550014455374]$ |
$27719$ |
$[27719, 1311191857, 48520322483789, 1771172788704310813, 64615098529676835926384, 2357221845991117542368665513, 85993800800661972880824456866081, 3137139825001429940664072326564248053, 114445997941023473548179175988619731910851, 4175104451008334786712855060698950315502924032]$ |
$4$ |
$4$ |
$2$ |
$2$ |
$1$ |
4.0.634933.1 |
$C_4$ |
simple |
| 2.191.abz_bnq |
$2$ |
$\F_{191}$ |
$191$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 27 x + 191 x^{2} )( 1 - 24 x + 191 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$141$ |
$[141, 35941, 6963588, 1330851241, 254195286951, 48551236397998, 9273284376132561, 1771197287476525681, 338298681574399166028, 64615048177925844373501]$ |
$27720$ |
$[27720, 1311266880, 48521390148000, 1771181155243019520, 64615146042759342723000, 2357222064175680030983808000, 85993801654906280911151050539480, 3137139827932990568374670010286740480, 114445997949961156725654965513069732388000, 4175104451032619054979252536137717576199592000]$ |
$20$ |
$20$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-35}) \), \(\Q(\sqrt{-47}) \) |
$C_2$, $C_2$ |
1.191.abb $\times$ 1.191.ay |
| 2.191.abz_bnr |
$2$ |
$\F_{191}$ |
$191$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 51 x + 1031 x^{2} - 9741 x^{3} + 36481 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$141$ |
$[141, 35943, 6963741, 1330857523, 254195473356, 48551240857443, 9273284466607071, 1771197289069510003, 338298681598843301451, 64615048178246931323598]$ |
$27721$ |
$[27721, 1311341905, 48522457818391, 1771189516466739405, 64615193426209723711216, 2357222280687268899315740305, 85993802493902140440061168148251, 3137139830754480077894498865725239605, 114445997958230575511407034660402005762141, 4175104451053366103729078797729437544420000000]$ |
$8$ |
$8$ |
$2$ |
$2$ |
$1$ |
4.0.235125.1 |
$D_{4}$ |
simple |
| 2.191.abz_bns |
$2$ |
$\F_{191}$ |
$191$ |
|
|
✓ |
✓ |
|
|
✓ |
|
$( 1 - 26 x + 191 x^{2} )( 1 - 25 x + 191 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$141$ |
$[141, 35945, 6963894, 1330863801, 254195659251, 48551245282442, 9273284555439381, 1771197290600549521, 338298681621325120074, 64615048178513941140305]$ |
$27722$ |
$[27722, 1311416932, 48523525494968, 1771197872375495200, 64615240680028026608702, 2357222495526466821096692800, 85993803317669414895780060408542, 3137139833466253119636570289357852800, 114445997965836145111240378905074452148888, 4175104451070618955899687190963038843686059012]$ |
$0$ |
$0$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-22}) \), \(\Q(\sqrt{-139}) \) |
$C_2$, $C_2$ |
1.191.aba $\times$ 1.191.az |
| 2.191.aby_bmn |
$2$ |
$\F_{191}$ |
$191$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 50 x + 1001 x^{2} - 9550 x^{3} + 36481 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$142$ |
$[142, 35984, 6964372, 1330855284, 254195069702, 48551227488758, 9273284161501082, 1771197283502922724, 338298681514232780812, 64615048177178279052704]$ |
$27883$ |
$[27883, 1312815289, 48526845453700, 1771186533895958329, 64615090818737263808803, 2357221631621080503528490000, 85993799664567566258665229091763, 3137139820894955797008388510173407529, 114445997929606947933349048322420890015300, 4175104450984315085760007594810479449840804809]$ |
$4$ |
$4$ |
$2$ |
$2$ |
$1$ |
4.0.1548864.3 |
$D_{4}$ |
simple |
| 2.191.aby_bmo |
$2$ |
$\F_{191}$ |
$191$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 50 x + 1002 x^{2} - 9550 x^{3} + 36481 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$142$ |
$[142, 35986, 6964522, 1330861278, 254195241702, 48551231450386, 9273284238841282, 1771197284823098238, 338298681534362064862, 64615048177458151442706]$ |
$27884$ |
$[27884, 1312890256, 48527892101564, 1771194511720582400, 64615134540443980747804, 2357221823963014166468359696, 85993800381765225721498380209804, 3137139823233247083236094816925798400, 114445997936416658187735806752023229535564, 4175104451002399053723510769475922175590086416]$ |
$24$ |
$24$ |
$2$ |
$2$ |
$1$ |
4.0.136400.1 |
$D_{4}$ |
simple |
| 2.191.aby_bmp |
$2$ |
$\F_{191}$ |
$191$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 27 x + 191 x^{2} )( 1 - 23 x + 191 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$142$ |
$[142, 35988, 6964672, 1330867268, 254195413202, 48551235379038, 9273284314651982, 1771197286087321348, 338298681552776456512, 64615048177692355395348]$ |
$27885$ |
$[27885, 1312965225, 48528938755440, 1771202484229689225, 64615178135059740742125, 2357222014703926385561145600, 85993801084779398672571394192365, 3137139825472435623978491604036297225, 114445997942646222604358486211305390891760, 4175104451017532153406827147668336467369515625]$ |
$24$ |
$24$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-35}) \), \(\Q(\sqrt{-235}) \) |
$C_2$, $C_2$ |
1.191.abb $\times$ 1.191.ax |
| 2.191.aby_bmq |
$2$ |
$\F_{191}$ |
$191$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 50 x + 1004 x^{2} - 9550 x^{3} + 36481 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$142$ |
$[142, 35990, 6964822, 1330873254, 254195584202, 48551239274726, 9273284388935282, 1771197287295783934, 338298681569488144462, 64615048177881495172550]$ |
$27886$ |
$[27886, 1313040196, 48529985415334, 1771210451423302864, 64615221602584588672726, 2357222203844399828792744356, 85993801773629559054614242866046, 3137139827612861276601533598385296384, 114445997948299764604373829595858821168094, 4175104451029753429223037275469998583644367076]$ |
$14$ |
$14$ |
$2$ |
$2$ |
$1$ |
4.0.1583424.1 |
$D_{4}$ |
simple |
| 2.191.aby_bmr |
$2$ |
$\F_{191}$ |
$191$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 50 x + 1005 x^{2} - 9550 x^{3} + 36481 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$142$ |
$[142, 35992, 6964972, 1330879236, 254195754702, 48551243137462, 9273284461693282, 1771197288448677828, 338298681584509306612, 64615048178026173776952]$ |
$27887$ |
$[27887, 1313115169, 48531032081252, 1771218413301447401, 64615264943018569540927, 2357222391385017164437202704, 85993802448335180810802086370527, 3137139829654863813454209314238055625, 114445997953381403955313265880380268313892, 4175104451039101844216784154835286428328947329]$ |
$9$ |
$9$ |
$2$ |
$2$ |
$1$ |
4.0.17984.1 |
$D_{4}$ |
simple |
| 2.191.aby_bms |
$2$ |
$\F_{191}$ |
$191$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 26 x + 191 x^{2} )( 1 - 24 x + 191 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$142$ |
$[142, 35994, 6965122, 1330885214, 254195924702, 48551246967258, 9273284532928082, 1771197289546194814, 338298681597852110062, 64615048178126992952154]$ |
$27888$ |
$[27888, 1313190144, 48532078753200, 1771226369864146944, 64615308156361728468528, 2357222577326361061057440000, 85993803108915737884757379086448, 3137139831598782921868545048276762624, 114445997957895256771082915698280749330800, 4175104451045616280079780861295669540591638784]$ |
$20$ |
$20$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-22}) \), \(\Q(\sqrt{-47}) \) |
$C_2$, $C_2$ |
1.191.aba $\times$ 1.191.ay |
| 2.191.aby_bmt |
$2$ |
$\F_{191}$ |
$191$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 25 x + 191 x^{2} )^{2}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$142$ |
$[142, 35996, 6965272, 1330891188, 254196094202, 48551250764126, 9273284602641782, 1771197290588526628, 338298681609528711112, 64615048178184553182956]$ |
$27889$ |
$[27889, 1313265121, 48533125431184, 1771234321111425625, 64615351242614110697929, 2357222761669014187505971456, 85993803755390704220551980623449, 3137139833444958204159608891993675625, 114445997961845435511963596960277825980944, 4175104451049335537166318161729395034795513041]$ |
$21$ |
$21$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-139}) \) |
$C_2$ |
1.191.az 2 |
| 2.191.abx_bll |
$2$ |
$\F_{191}$ |
$191$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 49 x + 973 x^{2} - 9359 x^{3} + 36481 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$143$ |
$[143, 36027, 6965177, 1330861355, 254194955068, 48551222204487, 9273284046585751, 1771197281777915779, 338298681496579489877, 64615048177104948287502]$ |
$28047$ |
$[28047, 1314366561, 48532449455037, 1771194612674312541, 64615061679309548684112, 2357221375063270211493784329, 85993798598925052493010493924593, 3137139817839628181115080593997564469, 114445997923634862885326701359678202989147, 4175104450979576814833608123465431544215787776]$ |
$10$ |
$10$ |
$2$ |
$2$ |
$1$ |
4.0.2273909.1 |
$D_{4}$ |
simple |
| 2.191.abx_blm |
$2$ |
$\F_{191}$ |
$191$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 49 x + 974 x^{2} - 9359 x^{3} + 36481 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$143$ |
$[143, 36029, 6965324, 1330867065, 254195113093, 48551225690990, 9273284111532115, 1771197282839151313, 338298681512359032740, 64615048177329018682949]$ |
$28048$ |
$[28048, 1314441472, 48533475090112, 1771202212439569408, 64615101848591844452848, 2357221544337283187461132288, 85993799201191142765111007258928, 3137139819719285676562126063570341888, 114445997928973061430933266142179501848768, 4175104450994055134230546310993576097173477632]$ |
$24$ |
$24$ |
$2$ |
$2$ |
$1$ |
4.0.1190277.1 |
$D_{4}$ |
simple |
| 2.191.abx_bln |
$2$ |
$\F_{191}$ |
$191$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 49 x + 975 x^{2} - 9359 x^{3} + 36481 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$143$ |
$[143, 36031, 6965471, 1330872771, 254195270628, 48551229145963, 9273284175057773, 1771197283850101011, 338298681526652651681, 64615048177515038883726]$ |
$28049$ |
$[28049, 1314516385, 48534500731031, 1771209806888796365, 64615141893324404297104, 2357221712080479134960148625, 85993799790282623778366500911259, 3137139821509877036166511533358544885, 114445997933808573872913313896271651283381, 4175104451006074838465713572981551345501344000]$ |
$20$ |
$20$ |
$2$ |
$2$ |
$1$ |
4.0.5958485.4 |
$D_{4}$ |
simple |
| 2.191.abx_blo |
$2$ |
$\F_{191}$ |
$191$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 27 x + 191 x^{2} )( 1 - 22 x + 191 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$143$ |
$[143, 36033, 6965618, 1330878473, 254195427673, 48551232569418, 9273284237164783, 1771197284810948593, 338298681539471714798, 64615048177663556296473]$ |
$28050$ |
$[28050, 1314591300, 48535526377800, 1771217396022016800, 64615181813507270343750, 2357221878293440716592372800, 85993800366218579990782673420550, 3137139823211727664318087893031324800, 114445997938145246023844393902971130045800, 4175104451015671298245531435900684002152062500]$ |
$20$ |
$20$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-35}) \), \(\Q(\sqrt{-70}) \) |
$C_2$, $C_2$ |
1.191.abb $\times$ 1.191.aw |
| 2.191.abx_blp |
$2$ |
$\F_{191}$ |
$191$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 49 x + 977 x^{2} - 9359 x^{3} + 36481 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$143$ |
$[143, 36035, 6965765, 1330884171, 254195584228, 48551235961367, 9273284297855203, 1771197285721877731, 338298681550827579605, 64615048177775117121230]$ |
$28051$ |
$[28051, 1314666217, 48536552030425, 1771224979839254125, 64615221609140484836656, 2357222042976750595230279025, 85993800929018095860767752587781, 3137139824825162880389671091152687125, 114445997941986920115751175327153847239575, 4175104451022879806311904544232119999509907712]$ |
$14$ |
$14$ |
$2$ |
$2$ |
$1$ |
4.0.5519997.1 |
$D_{4}$ |
simple |
| 2.191.abx_blq |
$2$ |
$\F_{191}$ |
$191$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 49 x + 978 x^{2} - 9359 x^{3} + 36481 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$143$ |
$[143, 36037, 6965912, 1330889865, 254195740293, 48551239321822, 9273284357131091, 1771197286583072049, 338298681560731593032, 64615048177850266351677]$ |
$28052$ |
$[28052, 1314741136, 48537577688912, 1771232558340531776, 64615261280224090136812, 2357222206130991434017978624, 85993801478700255847134477649148, 3137139826350507918737045759696232704, 114445997945337434800105452071881028310992, 4175104451027735577457728277123725439310808976]$ |
$24$ |
$24$ |
$2$ |
$2$ |
$1$ |
4.0.1100801.1 |
$D_{4}$ |
simple |
| 2.191.abx_blr |
$2$ |
$\F_{191}$ |
$191$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 49 x + 979 x^{2} - 9359 x^{3} + 36481 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$143$ |
$[143, 36039, 6966059, 1330895555, 254195895868, 48551242650795, 9273284414994505, 1771197287394715123, 338298681569195091425, 64615048177889547775374]$ |
$28053$ |
$[28053, 1314816057, 48538603353267, 1771240131525873213, 64615300826758128722448, 2357222367756745896371923113, 85993802015284144409102086368303, 3137139827788087928698968854912226453, 114445997948200625147826147668171970028113, 4175104451030273748542396365103545992727372032]$ |
$17$ |
$17$ |
$2$ |
$2$ |
$1$ |
4.0.3034733.1 |
$D_{4}$ |
simple |
| 2.191.abx_bls |
$2$ |
$\F_{191}$ |
$191$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 26 x + 191 x^{2} )( 1 - 23 x + 191 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$143$ |
$[143, 36041, 6966206, 1330901241, 254196050953, 48551245948298, 9273284471447503, 1771197288156990481, 338298681576229400546, 64615048177893503974001]$ |
$28054$ |
$[28054, 1314890980, 48539629023496, 1771247699395301920, 64615340248742643189154, 2357222527854596645981608000, 85993802538788846006298307052674, 3137139829138227974597173314586366080, 114445997950580322649279320200374220607016, 4175104451030529378507308506850201814442394500]$ |
$8$ |
$8$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-22}) \), \(\Q(\sqrt{-235}) \) |
$C_2$, $C_2$ |
1.191.aba $\times$ 1.191.ax |
| 2.191.abx_blt |
$2$ |
$\F_{191}$ |
$191$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 49 x + 981 x^{2} - 9359 x^{3} + 36481 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$143$ |
$[143, 36043, 6966353, 1330906923, 254196205548, 48551249214343, 9273284526492143, 1771197288870081603, 338298681581845835573, 64615048177862676323598]$ |
$28055$ |
$[28055, 1314965905, 48540654699605, 1771255261948841405, 64615379546177676250000, 2357222686425126346810277305, 85993803049233445098761355498905, 3137139830401253035736371731729663605, 114445997952480355214278167267282095679155, 4175104451028537448391377986020596566820000000]$ |
$16$ |
$16$ |
$2$ |
$2$ |
$1$ |
4.0.585125.1 |
$D_{4}$ |
simple |
| 2.191.abx_blu |
$2$ |
$\F_{191}$ |
$191$ |
|
|
✓ |
✓ |
|
|
✓ |
|
$( 1 - 25 x + 191 x^{2} )( 1 - 24 x + 191 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$143$ |
$[143, 36045, 6966500, 1330912601, 254196359653, 48551252448942, 9273284580130483, 1771197289534171921, 338298681586055701100, 64615048177797604994805]$ |
$28056$ |
$[28056, 1315040832, 48541680381600, 1771262819186515200, 64615418719063270735656, 2357222843468917663095628800, 85993803546637026146941936872456, 3137139831577488006404260044738892800, 114445997953904547172083030979154795690400, 4175104451024332861346539288135320686116264512]$ |
$0$ |
$0$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-139}) \), \(\Q(\sqrt{-47}) \) |
$C_2$, $C_2$ |
1.191.az $\times$ 1.191.ay |
| 2.191.abw_bkj |
$2$ |
$\F_{191}$ |
$191$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 48 x + 945 x^{2} - 9168 x^{3} + 36481 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$144$ |
$[144, 36068, 6965856, 1330863684, 254194778064, 48551216642174, 9273283949383920, 1771197280708311940, 338298681492405868320, 64615048177214430184868]$ |
$28211$ |
$[28211, 1315845673, 48537176259584, 1771197711718318537, 64615016685856127984531, 2357221105006202920335572992, 85993797697544861123570707846739, 3137139815945148767131075025248362633, 114445997922222932215424545588917050153984, 4175104450986650992906468097909961217328455273]$ |
$6$ |
$6$ |
$2$ |
$2$ |
$1$ |
4.0.113737.1 |
$D_{4}$ |
simple |
| 2.191.abw_bkk |
$2$ |
$\F_{191}$ |
$191$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 48 x + 946 x^{2} - 9168 x^{3} + 36481 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$144$ |
$[144, 36070, 6966000, 1330869118, 254194923024, 48551219706598, 9273284004033648, 1771197281572939774, 338298681505284405648, 64615048177408841404390]$ |
$28212$ |
$[28212, 1315920528, 48538180885428, 1771204944078655488, 64615053534038868452532, 2357221253787748339643487888, 85993798204327316064017150986548, 3137139817476575237705850013946806272, 114445997926579724413450865766752466626868, 4175104450999212883222159649257905304669208208]$ |
$62$ |
$62$ |
$2$ |
$2$ |
$1$ |
4.0.7488.1 |
$D_{4}$ |
simple |
| 2.191.abw_bkl |
$2$ |
$\F_{191}$ |
$191$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 48 x + 947 x^{2} - 9168 x^{3} + 36481 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$144$ |
$[144, 36072, 6966144, 1330874548, 254195067504, 48551222740902, 9273284057365584, 1771197282392453668, 338298681516877494144, 64615048177571562016152]$ |
$28213$ |
$[28213, 1315995385, 48539185516948, 1771212171122465625, 64615090260213144501133, 2357221401106933378936765840, 85993798698889512163498135042333, 3137139818928096020431725871720715625, 114445997930501650966425343148505553453588, 4175104451009727083390645928232759804350579625]$ |
$16$ |
$16$ |
$2$ |
$2$ |
$1$ |
4.0.11586960.3 |
$D_{4}$ |
simple |
| 2.191.abw_bkm |
$2$ |
$\F_{191}$ |
$191$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 48 x + 948 x^{2} - 9168 x^{3} + 36481 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$144$ |
$[144, 36074, 6966288, 1330879974, 254195211504, 48551225745098, 9273284109381744, 1771197283167029374, 338298681527195722128, 64615048177703087033354]$ |
$28214$ |
$[28214, 1316070244, 48540190154150, 1771219392849771664, 64615126864378995585734, 2357221546964340695783380900, 85993799181250144396015027416854, 3137139820300022406793288304507326464, 114445997933992293889052648618410443416150, 4175104451018225578713696724673864953225838884]$ |
$12$ |
$12$ |
$2$ |
$2$ |
$1$ |
4.0.13830400.1 |
$D_{4}$ |
simple |
| 2.191.abw_bkn |
$2$ |
$\F_{191}$ |
$191$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 27 x + 191 x^{2} )( 1 - 21 x + 191 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$144$ |
$[144, 36076, 6966432, 1330885396, 254195355024, 48551228719198, 9273284160084144, 1771197283896842596, 338298681536249667552, 64615048177803910314076]$ |
$28215$ |
$[28215, 1316145105, 48541194797040, 1771226609260596345, 64615163346536461275375, 2357221691360552948005536000, 85993799651427907735931749462335, 3137139821592665603258026237554590505, 114445997937055231688557018298209488597360, 4175104451024740279854947565026894669016782625]$ |
$56$ |
$56$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-35}) \), \(\Q(\sqrt{-323}) \) |
$C_2$, $C_2$ |
1.191.abb $\times$ 1.191.av |
| 2.191.abw_bko |
$2$ |
$\F_{191}$ |
$191$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 48 x + 950 x^{2} - 9168 x^{3} + 36481 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$144$ |
$[144, 36078, 6966576, 1330890814, 254195498064, 48551231663214, 9273284209474800, 1771197284582068990, 338298681544049898000, 64615048177874524561518]$ |
$28216$ |
$[28216, 1316219968, 48542199445624, 1771233820354962432, 64615199706685581252856, 2357221834296152793680345152, 85993800109441497157976638529464, 3137139822806336731276335092211007488, 114445997939694039364682257746307969152184, 4175104451029303022855407328094076858758672448]$ |
$56$ |
$56$ |
$2$ |
$2$ |
$1$ |
4.0.223488.6 |
$D_{4}$ |
simple |
| 2.191.abw_bkp |
$2$ |
$\F_{191}$ |
$191$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 48 x + 951 x^{2} - 9168 x^{3} + 36481 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$144$ |
$[144, 36080, 6966720, 1330896228, 254195640624, 48551234577158, 9273284257555728, 1771197285222884164, 338298681550606970688, 64615048177915421324240]$ |
$28217$ |
$[28217, 1316294833, 48543204099908, 1771241026132892713, 64615235944826395314857, 2357221975771722891140516368, 85993800555309607637244314794313, 3137139823941346827281520078088440777, 114445997941912288409691746189053389715268, 4175104451031945569148965860833601732926905233]$ |
$16$ |
$16$ |
$2$ |
$2$ |
$1$ |
4.0.13040272.1 |
$D_{4}$ |
simple |
| 2.191.abw_bkq |
$2$ |
$\F_{191}$ |
$191$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 48 x + 952 x^{2} - 9168 x^{3} + 36481 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$144$ |
$[144, 36082, 6966864, 1330901638, 254195782704, 48551237461042, 9273284304328944, 1771197285819463678, 338298681555931432464, 64615048177927090996402]$ |
$28218$ |
$[28218, 1316369700, 48544208759898, 1771248226594410000, 64615272060958943372058, 2357222115787845898975035300, 85993800989050934149197552868218, 3137139824998006842689799500636160000, 114445997943713546808368440784280980373498, 4175104451032699605577901594208560439163342500]$ |
$84$ |
$84$ |
$2$ |
$2$ |
$1$ |
4.0.444672.4 |
$D_{4}$ |
simple |
| 2.191.abw_bkr |
$2$ |
$\F_{191}$ |
$191$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 48 x + 953 x^{2} - 9168 x^{3} + 36481 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$144$ |
$[144, 36084, 6967008, 1330907044, 254195924304, 48551240314878, 9273284349796464, 1771197286371983044, 338298681560033819808, 64615048177910022818004]$ |
$28219$ |
$[28219, 1316444569, 48545213425600, 1771255421739537129, 64615308055083265449259, 2357222254345104476029849600, 85993801410684171669669158195659, 3137139825976627643900308084164394569, 114445997945101379038014880917267363505600, 4175104451031596744408389159085757771428945209]$ |
$28$ |
$28$ |
$2$ |
$2$ |
$1$ |
4.0.549225.1 |
$D_{4}$ |
simple |
| 2.191.abw_bks |
$2$ |
$\F_{191}$ |
$191$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 26 x + 191 x^{2} )( 1 - 22 x + 191 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$144$ |
$[144, 36086, 6967152, 1330912446, 254196065424, 48551243138678, 9273284393960304, 1771197286880617726, 338298681562924658832, 64615048177864704875126]$ |
$28220$ |
$[28220, 1316519440, 48546218097020, 1771262611568296960, 64615343927199401685500, 2357222391444081281408554000, 85993801820228015174863848245180, 3137139826877520012295100310355722240, 114445997946079346068453192529234692526780, 4175104451028668523346007002184744155763626000]$ |
$32$ |
$32$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-22}) \), \(\Q(\sqrt{-70}) \) |
$C_2$, $C_2$ |
1.191.aba $\times$ 1.191.aw |
| 2.191.abw_bkt |
$2$ |
$\F_{191}$ |
$191$ |
✓ |
✓ |
✓ |
|
✓ |
|
✓ |
✓ |
$1 - 48 x + 955 x^{2} - 9168 x^{3} + 36481 x^{4}$ |
$[0,\frac{1}{2},\frac{1}{2},1]$ |
$1$ |
$1$ |
$1$ |
$2$ |
$0$ |
$144$ |
$[144, 36088, 6967296, 1330917844, 254196206064, 48551245932454, 9273284436822480, 1771197287345543140, 338298681564614465280, 64615048177791624100168]$ |
$28221$ |
$[28221, 1316594313, 48547222774164, 1771269796080712377, 64615379677307392334181, 2357222527085358974473076112, 85993802217701159641360138498389, 3137139827700994644239153772302657193, 114445997946651005362025092478547913675284, 4175104451023946405551245002077413562637670873]$ |
$28$ |
$28$ |
$2$ |
$2$ |
$1$ |
4.0.3933072.3 |
$D_{4}$ |
simple |
| 2.191.abw_bku |
$2$ |
$\F_{191}$ |
$191$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 48 x + 956 x^{2} - 9168 x^{3} + 36481 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$144$ |
$[144, 36090, 6967440, 1330923238, 254196346224, 48551248696218, 9273284478385008, 1771197287766934654, 338298681565113744528, 64615048177691266272090]$ |
$28222$ |
$[28222, 1316669188, 48548227457038, 1771276975276806288, 64615415305407277763182, 2357222661269520214844362948, 85993802603122300046112233242078, 3137139828447362151080372544109842432, 114445997946819910873591892934748147439518, 4175104451017461779655012085238515448135325508]$ |
$28$ |
$28$ |
$2$ |
$2$ |
$1$ |
4.0.39168.3 |
$D_{4}$ |
simple |
| 2.191.abw_bkv |
$2$ |
$\F_{191}$ |
$191$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 25 x + 191 x^{2} )( 1 - 23 x + 191 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$144$ |
$[144, 36092, 6967584, 1330928628, 254196485904, 48551251429982, 9273284518649904, 1771197288144967588, 338298681564432991584, 64615048177564116016652]$ |
$28223$ |
$[28223, 1316744065, 48549232145648, 1771284149156601625, 64615450811499098454983, 2357222793997147662403068160, 85993802976510131366451921168503, 3137139829116933059149590566099291625, 114445997946589613050534505805565532049008, 4175104451009245959774143842147430281923816625]$ |
$18$ |
$18$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-139}) \), \(\Q(\sqrt{-235}) \) |
$C_2$, $C_2$ |
1.191.az $\times$ 1.191.ax |
| 2.191.abw_bkw |
$2$ |
$\F_{191}$ |
$191$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 24 x + 191 x^{2} )^{2}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$144$ |
$[144, 36094, 6967728, 1330934014, 254196625104, 48551254133758, 9273284557619184, 1771197288479817214, 338298681562582691088, 64615048177410656806654]$ |
$28224$ |
$[28224, 1316818944, 48550236840000, 1771291317720121344, 64615486195582895006784, 2357222925268823977290240000, 85993803337883348580090475788864, 3137139829710017809760575045657165824, 114445997945963658832753447197055217640000, 4175104450999330185526910143441559679133814784]$ |
$105$ |
$105$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-47}) \) |
$C_2$ |
1.191.ay 2 |
| 2.191.abv_bji |
$2$ |
$\F_{191}$ |
$191$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 47 x + 918 x^{2} - 8977 x^{3} + 36481 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$145$ |
$[145, 36109, 6966556, 1330867929, 254194690875, 48551213953198, 9273283921836205, 1771197280976822289, 338298681508885141396, 64615048177578266133429]$ |
$28376$ |
$[28376, 1317327424, 48542051259296, 1771203361377922304, 64614994523053342297576, 2357220974453173484932326400, 85993797442087076346985207601096, 3137139816420733567700049639611945984, 114445997927797848569610168002626249094816, 4175104451010160270251477522750190355779345984]$ |
$20$ |
$20$ |
$2$ |
$2$ |
$1$ |
4.0.2454725.2 |
$D_{4}$ |
simple |
| 2.191.abv_bjj |
$2$ |
$\F_{191}$ |
$191$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 47 x + 919 x^{2} - 8977 x^{3} + 36481 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$145$ |
$[145, 36111, 6966697, 1330873091, 254194823180, 48551216615883, 9273283966800635, 1771197281654849491, 338298681518802651487, 64615048177732465779726]$ |
$28377$ |
$[28377, 1317402225, 48543034884975, 1771210231670508525, 64615028154367770644112, 2357221103729789406710270625, 85993797859055009289398614294467, 3137139817621653505676007301365964725, 114445997931152929157483854606656556344525, 4175104451020123887825978043047648861102240000]$ |
$25$ |
$25$ |
$2$ |
$2$ |
$1$ |
4.0.733037.1 |
$D_{4}$ |
simple |
| 2.191.abv_bjk |
$2$ |
$\F_{191}$ |
$191$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 47 x + 920 x^{2} - 8977 x^{3} + 36481 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$145$ |
$[145, 36113, 6966838, 1330878249, 254194955015, 48551219249834, 9273284010546449, 1771197282292638385, 338298681527619359914, 64615048177860699665993]$ |
$28378$ |
$[28378, 1317477028, 48544018516168, 1771217096646108832, 64615061666215091756158, 2357221231611336477208101952, 85993798264722370366806863321662, 3137139818751303461863876472784263808, 114445997934135609993764846341372051933672, 4175104451028409726565153731632487543087052548]$ |
$18$ |
$18$ |
$2$ |
$2$ |
$1$ |
4.0.24458472.1 |
$D_{4}$ |
simple |
| 2.191.abv_bjl |
$2$ |
$\F_{191}$ |
$191$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 47 x + 921 x^{2} - 8977 x^{3} + 36481 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$145$ |
$[145, 36115, 6966979, 1330883403, 254195086380, 48551221855063, 9273284053075621, 1771197282890356899, 338298681535345104811, 64615048177963413520590]$ |
$28379$ |
$[28379, 1317551833, 48545002152881, 1771223956304745293, 64615095058595342610544, 2357221358098397349537868513, 85993798659107465070202710333869, 3137139819809980869896557873359300437, 114445997936749219306220546609723326061039, 4175104451035046587228462112839862126342295808]$ |
$21$ |
$21$ |
$2$ |
$2$ |
$1$ |
4.0.28463597.1 |
$D_{4}$ |
simple |
| 2.191.abv_bjm |
$2$ |
$\F_{191}$ |
$191$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 27 x + 191 x^{2} )( 1 - 20 x + 191 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$145$ |
$[145, 36117, 6967120, 1330888553, 254195217275, 48551224431582, 9273284094390125, 1771197283448172913, 338298681541989714160, 64615048178041051967277]$ |
$28380$ |
$[28380, 1317626640, 48545985795120, 1771230810646440000, 64615128331508560294500, 2357221483191554677050312960, 85993799042228598890905835228820, 3137139820797983078389802988251040000, 114445997938997081888210383357938972354480, 4175104451040063199201578635538579059228106000]$ |
$56$ |
$56$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-35}) \), \(\Q(\sqrt{-91}) \) |
$C_2$, $C_2$ |
1.191.abb $\times$ 1.191.au |
| 2.191.abv_bjn |
$2$ |
$\F_{191}$ |
$191$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 47 x + 923 x^{2} - 8977 x^{3} + 36481 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$145$ |
$[145, 36119, 6967261, 1330893699, 254195347700, 48551226979403, 9273284134491935, 1771197283966254259, 338298681547563005791, 64615048178094058525454]$ |
$28381$ |
$[28381, 1317701449, 48546969442891, 1771237659671215069, 64615161484954782005776, 2357221606891391113335535225, 85993799414104077320564592342871, 3137139821715607350942217033867061589, 114445997940882519098685812714130771438121, 4175104451043488220511904288144368641526653184]$ |
$27$ |
$27$ |
$2$ |
$2$ |
$1$ |
4.0.383725.4 |
$D_{4}$ |
simple |
| 2.191.abv_bjo |
$2$ |
$\F_{191}$ |
$191$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 47 x + 924 x^{2} - 8977 x^{3} + 36481 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$145$ |
$[145, 36121, 6967402, 1330898841, 254195477655, 48551229498538, 9273284173383025, 1771197284444768721, 338298681552074787382, 64615048178122875610401]$ |
$28382$ |
$[28382, 1317776260, 48547953096200, 1771244503379092640, 64615194518934045052762, 2357221729198489312223656000, 85993799774752205851157765284922, 3137139822563150866135261937902828160, 114445997942408848862190322656041772405800, 4175104451045350237844073213676004174177486500]$ |
$20$ |
$20$ |
$2$ |
$2$ |
$1$ |
4.0.30190760.1 |
$D_{4}$ |
simple |
| 2.191.abv_bjp |
$2$ |
$\F_{191}$ |
$191$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 47 x + 925 x^{2} - 8977 x^{3} + 36481 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$145$ |
$[145, 36123, 6967543, 1330903979, 254195607140, 48551231988999, 9273284211065369, 1771197284883884035, 338298681555534856459, 64615048178127944533518]$ |
$28383$ |
$[28383, 1317851073, 48548936755053, 1771251341770094877, 64615227433446386854608, 2357221850113431927785480937, 85993800124191289974996326417217, 3137139823340910717533259333879276213, 114445997943579385668859436708070551281227, 4175104451045677766555460324854578195027822848]$ |
$62$ |
$62$ |
$2$ |
$2$ |
$1$ |
4.0.28164437.1 |
$D_{4}$ |
simple |