| Label |
Dimension |
Base field |
Base char. |
Simple |
Geom. simple |
Primitive |
Ordinary |
Almost ordinary |
Supersingular |
Princ. polarizable |
Jacobian |
L-polynomial |
Newton slopes |
Newton elevation |
$p$-rank |
$p$-corank |
Angle rank |
Angle corank |
$\mathbb{F}_q$ points on curve |
$\mathbb{F}_{q^k}$ points on curve |
$\mathbb{F}_q$ points on variety |
$\mathbb{F}_{q^k}$ points on variety |
Jacobians |
Hyperelliptic Jacobians |
Num. twists |
Max. twist degree |
End. degree |
Number fields |
Galois groups |
Isogeny factors |
| 2.157.aby_bkd |
$2$ |
$\F_{157}$ |
$157$ |
|
|
✓ |
✓ |
|
|
✓ |
|
$( 1 - 25 x + 157 x^{2} )^{2}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$108$ |
$[108, 24028, 3862194, 607478356, 95387830308, 14976057666022, 2351243105875044, 369145192505797348, 57955795523282943258, 9099059900745544837228]$ |
$17689$ |
$[17689, 592386921, 14946296209936, 369087572149556841, 9098949035711285113489, 224282515358333070813597696, 5528344546545082836027573900361, 136268173913382742967373141566015625, 3358874236170335543245202616209313675664, 82792891080029342715690335398086770956472121]$ |
$0$ |
$0$ |
$24$ |
$12$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
1.157.az 2 |
| 2.157.abx_bje |
$2$ |
$\F_{157}$ |
$157$ |
|
|
✓ |
✓ |
|
|
✓ |
|
$( 1 - 25 x + 157 x^{2} )( 1 - 24 x + 157 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$109$ |
$[109, 24077, 3863524, 607506433, 95388342769, 14976066138122, 2351243235831781, 369145194380470561, 57955795548905687188, 9099059901078536357957]$ |
$17822$ |
$[17822, 593579532, 14951438048456, 369104629650853824, 9098997918551996480102, 224282642237051228579863296, 5528344852104975923639755584614, 136268174605409349003746684580960000, 3358874237655322051514658789883084740104, 82792891083059252509292784045872432432583852]$ |
$0$ |
$0$ |
$12$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-13}) \) |
$C_2$, $C_2$ |
1.157.az $\times$ 1.157.ay |
| 2.157.abw_bif |
$2$ |
$\F_{157}$ |
$157$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 25 x + 157 x^{2} )( 1 - 23 x + 157 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$110$ |
$[110, 24124, 3864710, 607528852, 95388691550, 14976070708966, 2351243284813190, 369145194745294948, 57955795548765688190, 9099059901004785569164]$ |
$17955$ |
$[17955, 594723465, 14956023176640, 369118249771293225, 9099031188217524493275, 224282710690306928951316480, 5528344967272180355069925337635, 136268174740082517950824650608015625, 3358874237647208298211374594031573456320, 82792891082388189664327207748762633221884825]$ |
$3$ |
$3$ |
$12$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-11}) \) |
$C_2$, $C_2$ |
1.157.az $\times$ 1.157.ax |
| 2.157.abw_big |
$2$ |
$\F_{157}$ |
$157$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 24 x + 157 x^{2} )^{2}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$110$ |
$[110, 24126, 3864854, 607534510, 95388855230, 14976074610222, 2351243365788518, 369145196255143774, 57955795574528431118, 9099059901411527878686]$ |
$17956$ |
$[17956, 594774544, 14956581655876, 369121687940468736, 9099046801655324123236, 224282769115841162824538896, 5528345157664885900005428956036, 136268175297435958554519883135647744, 3358874239140308560440639970059207649444, 82792891086089162303006116046535505945387024]$ |
$5$ |
$5$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-13}) \) |
$C_2$ |
1.157.ay 2 |
| 2.157.abv_bhg |
$2$ |
$\F_{157}$ |
$157$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 25 x + 157 x^{2} )( 1 - 22 x + 157 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$111$ |
$[111, 24169, 3865758, 607546177, 95388905091, 14976072406726, 2351243282677743, 369145194338659873, 57955795538949278646, 9099059900839552881889]$ |
$18088$ |
$[18088, 595818720, 14960074790752, 369128775155414400, 9099051557554290307528, 224282736116070616765347840, 5528344962251225135070348320392, 136268174589975134489963193048000000, 3358874237078290473785084723720211849568, 82792891080884727545226549244697920779813600]$ |
$3$ |
$3$ |
$24$ |
$12$ |
$1$ |
\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-1}) \) |
$C_2$, $C_2$ |
1.157.az $\times$ 1.157.aw |
| 2.157.abv_bhh |
$2$ |
$\F_{157}$ |
$157$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 47 x + 865 x^{2} - 7379 x^{3} + 24649 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$111$ |
$[111, 24171, 3865899, 607551555, 95389054786, 14976075808587, 2351243349375255, 369145195502294979, 57955795557354140763, 9099059901106580230486]$ |
$18089$ |
$[18089, 595869749, 14960621573501, 369132043135033301, 9099065836941155875584, 224282787062615398155760061, 5528345119073307314014180574549, 136268175019525442851672195139184389, 3358874238144958899782093989110841838249, 82792891083314425385319129637775629251047424]$ |
$3$ |
$3$ |
$2$ |
$2$ |
$1$ |
4.0.69725.1 |
$D_{4}$ |
simple |
| 2.157.abv_bhi |
$2$ |
$\F_{157}$ |
$157$ |
|
|
✓ |
✓ |
|
|
✓ |
|
$( 1 - 24 x + 157 x^{2} )( 1 - 23 x + 157 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$111$ |
$[111, 24173, 3866040, 607556929, 95389204011, 14976079181066, 2351243414769927, 369145196619968161, 57955795574388432120, 9099059901337777089893]$ |
$18090$ |
$[18090, 595920780, 14961168361440, 369135308690366400, 9099080071499588796450, 224282837569135587843444480, 5528345272832096696899686011490, 136268175432109128185524354920748800, 3358874239132194807133768615731485783520, 82792891085418099458015981362110562374297900]$ |
$0$ |
$0$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-13}) \), \(\Q(\sqrt{-11}) \) |
$C_2$, $C_2$ |
1.157.ay $\times$ 1.157.ax |
| 2.157.abu_bgh |
$2$ |
$\F_{157}$ |
$157$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 25 x + 157 x^{2} )( 1 - 21 x + 157 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$112$ |
$[112, 24212, 3866674, 607558948, 95389009072, 14976072091622, 2351243252077552, 369145193654555716, 57955795528588253338, 9099059900726078728532]$ |
$18221$ |
$[18221, 596865297, 14963616087056, 369136533867138009, 9099061476136699522301, 224282731397052710179639296, 5528344890302734381408901023013, 136268174337441373052958847277075625, 3358874236477809009494917784568711484304, 82792891079852219426628147528968605576713777]$ |
$4$ |
$4$ |
$12$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-187}) \) |
$C_2$, $C_2$ |
1.157.az $\times$ 1.157.av |
| 2.157.abu_bgi |
$2$ |
$\F_{157}$ |
$157$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 46 x + 840 x^{2} - 7222 x^{3} + 24649 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$112$ |
$[112, 24214, 3866812, 607564054, 95389145692, 14976075048694, 2351243306799520, 369145194548377438, 57955795541751486976, 9099059900904009245254]$ |
$18222$ |
$[18222, 596916276, 14964151176126, 369139636523072976, 9099074508281416709502, 224282775682394306380137492, 5528345018967396069062549985006, 136268174667391366552587246791021568, 3358874237240694686890141011897634732542, 82792891081471219856478729375383734168112916]$ |
$8$ |
$8$ |
$2$ |
$2$ |
$1$ |
4.0.412992.5 |
$D_{4}$ |
simple |
| 2.157.abu_bgj |
$2$ |
$\F_{157}$ |
$157$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 46 x + 841 x^{2} - 7222 x^{3} + 24649 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$112$ |
$[112, 24216, 3866950, 607569156, 95389281852, 14976077977758, 2351243360317852, 369145195401248964, 57955795553742890302, 9099059901052684749016]$ |
$18223$ |
$[18223, 596967257, 14964686270236, 369142736754327449, 9099087496551101656903, 224282819548288041177801488, 5528345144802017466611923972447, 136268174982224792223078221867227817, 3358874237935666006368993090213654935932, 82792891082824027171014101836644853455589497]$ |
$6$ |
$6$ |
$2$ |
$2$ |
$1$ |
4.0.331328.1 |
$D_{4}$ |
simple |
| 2.157.abu_bgk |
$2$ |
$\F_{157}$ |
$157$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 24 x + 157 x^{2} )( 1 - 22 x + 157 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$112$ |
$[112, 24218, 3867088, 607574254, 95389417552, 14976080878826, 2351243412634480, 369145196213333086, 57955795564572022576, 9099059901172544402618]$ |
$18224$ |
$[18224, 597018240, 14965221369392, 369145834560921600, 9099100440945786045104, 224282862994913659249971840, 5528345267811141199384384837808, 136268175282001743962355014791987200, 3358874238563276982455955397362204108848, 82792891083914637338860301774236008395203200]$ |
$20$ |
$20$ |
$8$ |
$4$ |
$1$ |
\(\Q(\sqrt{-13}) \), \(\Q(\sqrt{-1}) \) |
$C_2$, $C_2$ |
1.157.ay $\times$ 1.157.aw |
| 2.157.abu_bgl |
$2$ |
$\F_{157}$ |
$157$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 23 x + 157 x^{2} )^{2}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$112$ |
$[112, 24220, 3867226, 607579348, 95389552792, 14976083751910, 2351243463751336, 369145196984792548, 57955795574248433122, 9099059901264026301100]$ |
$18225$ |
$[18225, 597069225, 14965756473600, 369148929942875625, 9099113341465501655625, 224282906022450905477222400, 5528345387999309892972370692225, 136268175566782297949625660055775625, 3358874239124081053826916861123204921600, 82792891084747036613031285856533208497605625]$ |
$16$ |
$16$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-11}) \) |
$C_2$ |
1.157.ax 2 |
| 2.157.abt_bfi |
$2$ |
$\F_{157}$ |
$157$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 25 x + 157 x^{2} )( 1 - 20 x + 157 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$113$ |
$[113, 24253, 3867464, 607567681, 95389026533, 14976070472122, 2351243209603289, 369145192998960673, 57955795522029847928, 9099059900704903092853]$ |
$18354$ |
$[18354, 597863196, 14966670261816, 369141839389766016, 9099063141713751553914, 224282707143315849601687296, 5528344790435412679917412768266, 136268174095431614021126789784000000, 3358874236097711406513041865427839060024, 82792891079659541049145450671274063240503996]$ |
$4$ |
$4$ |
$12$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-57}) \) |
$C_2$, $C_2$ |
1.157.az $\times$ 1.157.au |
| 2.157.abt_bfj |
$2$ |
$\F_{157}$ |
$157$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 45 x + 815 x^{2} - 7065 x^{3} + 24649 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$113$ |
$[113, 24255, 3867599, 607572523, 95389150958, 14976073035015, 2351243254374239, 369145193685967123, 57955795531564635353, 9099059900828766708150]$ |
$18355$ |
$[18355, 597914125, 14967193660015, 369144781587703125, 9099075010563050520400, 224282745525395752515602125, 5528344895702808069954063404335, 136268174349036743316760165223953125, 3358874236650307596989728118027178722995, 82792891080786583504268414564845619178400000]$ |
$10$ |
$10$ |
$2$ |
$2$ |
$1$ |
4.0.1296981.2 |
$D_{4}$ |
simple |
| 2.157.abt_bfk |
$2$ |
$\F_{157}$ |
$157$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 45 x + 816 x^{2} - 7065 x^{3} + 24649 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$113$ |
$[113, 24257, 3867734, 607577361, 95389274933, 14976075571238, 2351243298035129, 369145194336577153, 57955795540100519438, 9099059900928819953897]$ |
$18356$ |
$[18356, 597965056, 14967717063104, 369147721360577536, 9099086836490752061636, 224282783508065431495131136, 5528344998360182918421325497284, 136268174589206309227421080006348800, 3358874237145011549754650796114281925056, 82792891081696973980594989425144737407498496]$ |
$24$ |
$24$ |
$2$ |
$2$ |
$1$ |
4.0.93925.1 |
$D_{4}$ |
simple |
| 2.157.abt_bfl |
$2$ |
$\F_{157}$ |
$157$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 45 x + 817 x^{2} - 7065 x^{3} + 24649 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$113$ |
$[113, 24259, 3867869, 607582195, 95389398458, 14976078080803, 2351243340587849, 369145194950946019, 57955795547646357533, 9099059901005456813014]$ |
$18357$ |
$[18357, 598015989, 14968240471089, 369150658708408821, 9099098619496885802832, 224282821091504627847838221, 5528345098411981094853178364793, 136268174815997623770060737203661829, 3358874237582336599578130383727477487061, 82792891082394297352315910168962802548199424]$ |
$12$ |
$12$ |
$2$ |
$2$ |
$1$ |
4.0.1260909.3 |
$D_{4}$ |
simple |
| 2.157.abt_bfm |
$2$ |
$\F_{157}$ |
$157$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 24 x + 157 x^{2} )( 1 - 21 x + 157 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$113$ |
$[113, 24261, 3868004, 607587025, 95389521533, 14976080563722, 2351243382034289, 369145195529228929, 57955795554210997268, 9099059901059070249261]$ |
$18358$ |
$[18358, 598066924, 14968763883976, 369153593631216576, 9099110359581481467118, 224282858275893083071664896, 5528345195862646469021963603662, 136268175029467981242878930991216384, 3358874237962795517900310559891570363144, 82792891082882129220224114127616910001666124]$ |
$8$ |
$8$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-13}) \), \(\Q(\sqrt{-187}) \) |
$C_2$, $C_2$ |
1.157.ay $\times$ 1.157.av |
| 2.157.abt_bfn |
$2$ |
$\F_{157}$ |
$157$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 45 x + 819 x^{2} - 7065 x^{3} + 24649 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$113$ |
$[113, 24263, 3868139, 607591851, 95389644158, 14976083020007, 2351243422376339, 369145196071581043, 57955795559803276553, 9099059901090052207478]$ |
$18359$ |
$[18359, 598117861, 14969287301771, 369156526129020421, 9099122056744568875664, 224282895061410538855518181, 5528345290716622910939777342771, 136268175229674658225326189300766725, 3358874238286900512831160622020582903679, 82792891083164035913898517579313737438602496]$ |
$10$ |
$10$ |
$2$ |
$2$ |
$1$ |
4.0.299725.1 |
$D_{4}$ |
simple |
| 2.157.abt_bfo |
$2$ |
$\F_{157}$ |
$157$ |
|
|
✓ |
✓ |
|
|
✓ |
|
$( 1 - 23 x + 157 x^{2} )( 1 - 22 x + 157 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$113$ |
$[113, 24265, 3868274, 607596673, 95389766333, 14976085449670, 2351243461615889, 369145196578157473, 57955795564432023578, 9099059901098793613825]$ |
$18360$ |
$[18360, 598168800, 14969810724480, 369159456201840000, 9099133710986177947800, 224282931448236737079859200, 5528345382978354290859866613720, 136268175416674913578105927957440000, 3358874238555163229150477930254040883840, 82792891083243574493887792309679572862220000]$ |
$0$ |
$0$ |
$8$ |
$4$ |
$1$ |
\(\Q(\sqrt{-11}) \), \(\Q(\sqrt{-1}) \) |
$C_2$, $C_2$ |
1.157.ax $\times$ 1.157.aw |
| 2.157.abs_bej |
$2$ |
$\F_{157}$ |
$157$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 25 x + 157 x^{2} )( 1 - 19 x + 157 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$114$ |
$[114, 24292, 3868134, 607572868, 95388977994, 14976068120422, 2351243166818226, 369145192537364356, 57955795520517403998, 9099059900762259736132]$ |
$18487$ |
$[18487, 598812417, 14969260511296, 369144990625981689, 9099058511655649007527, 224282671924104379999236096, 5528344689837324594443616108319, 136268173925035552244998986600875625, 3358874236010056515346823439489180395584, 82792891080181432582055193345624316030530177]$ |
$6$ |
$6$ |
$12$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-267}) \) |
$C_2$, $C_2$ |
1.157.az $\times$ 1.157.at |
| 2.157.abs_bek |
$2$ |
$\F_{157}$ |
$157$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 44 x + 790 x^{2} - 6908 x^{3} + 24649 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$114$ |
$[114, 24294, 3868266, 607577454, 95389091074, 14976070335894, 2351243203406778, 369145193068865118, 57955795527626372370, 9099059900855349312454]$ |
$18488$ |
$[18488, 598863296, 14969772221432, 369147777231420416, 9099069298294218900408, 224282705103175893255015872, 5528344775865910389415113329528, 136268174121236503943702847330172928, 3358874236422062432763324520223908493624, 82792891081028460213158066055385092415521216]$ |
$28$ |
$28$ |
$2$ |
$2$ |
$1$ |
4.0.48128.1 |
$D_{4}$ |
simple |
| 2.157.abs_bel |
$2$ |
$\F_{157}$ |
$157$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 44 x + 791 x^{2} - 6908 x^{3} + 24649 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$114$ |
$[114, 24296, 3868398, 607582036, 95389203714, 14976072525998, 2351243238973386, 369145193568094564, 57955795533886186854, 9099059900929105433816]$ |
$18489$ |
$[18489, 598914177, 14970283936308, 369150561411426729, 9099080042964659421249, 224282737902335723817036048, 5528344859491657637983027939833, 136268174305524654513848412979193097, 3358874236784854961072213256395067333588, 82792891081699571579486061471537432430934097]$ |
$8$ |
$8$ |
$2$ |
$2$ |
$1$ |
4.0.4090128.2 |
$D_{4}$ |
simple |
| 2.157.abs_bem |
$2$ |
$\F_{157}$ |
$157$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 44 x + 792 x^{2} - 6908 x^{3} + 24649 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$114$ |
$[114, 24298, 3868530, 607586614, 95389315914, 14976074690746, 2351243273519898, 369145194035200606, 57955795539305040690, 9099059900983880740618]$ |
$18490$ |
$[18490, 598965060, 14970795655930, 369153343166019600, 9099090745666998205450, 224282770321763609854998660, 5528344940718911454285373711210, 136268174477954604967735895235379200, 3358874237098908946019085830448492892090, 82792891082197975377163350828038847469839300]$ |
$20$ |
$20$ |
$2$ |
$2$ |
$1$ |
4.0.4278528.1 |
$D_{4}$ |
simple |
| 2.157.abs_ben |
$2$ |
$\F_{157}$ |
$157$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 44 x + 793 x^{2} - 6908 x^{3} + 24649 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$114$ |
$[114, 24300, 3868662, 607591188, 95389427674, 14976076830150, 2351243307048162, 369145194470331108, 57955795543891117614, 9099059901020026901500]$ |
$18491$ |
$[18491, 599015945, 14971307380304, 369156122495218025, 9099101406401262983331, 224282802361639289716532480, 5528345019552016952673590991179, 136268174638580938598881710953350025, 3358874237364698682537782624036619304016, 82792891082526871460211724065266760480833625]$ |
$40$ |
$40$ |
$2$ |
$2$ |
$1$ |
4.0.241025.1 |
$D_{4}$ |
simple |
| 2.157.abs_beo |
$2$ |
$\F_{157}$ |
$157$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 24 x + 157 x^{2} )( 1 - 20 x + 157 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$114$ |
$[114, 24302, 3868794, 607595758, 95389538994, 14976078944222, 2351243339560026, 369145194873633886, 57955795547652591858, 9099059901037894613582]$ |
$18492$ |
$[18492, 599066832, 14971819109436, 369158899399041024, 9099112025167481580252, 224282834022142501927762896, 5528345095995319247713849389084, 136268174787458220982020407810457600, 3358874237582697914750390298341141277564, 82792891082689450842734365962795214184966352]$ |
$32$ |
$32$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-13}) \), \(\Q(\sqrt{-57}) \) |
$C_2$, $C_2$ |
1.157.ay $\times$ 1.157.au |
| 2.157.abs_bep |
$2$ |
$\F_{157}$ |
$157$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 44 x + 795 x^{2} - 6908 x^{3} + 24649 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$114$ |
$[114, 24304, 3868926, 607600324, 95389649874, 14976081032974, 2351243371057338, 369145195245256708, 57955795550597628150, 9099059901037833602704]$ |
$18493$ |
$[18493, 599117721, 14972330843332, 369161673877507641, 9099122601965681916733, 224282865303452985193882512, 5528345170053163454188354454053, 136268174924640999973106600715255273, 3358874237753379835967243893255221178084, 82792891082688895701099632296478222795652441]$ |
$10$ |
$10$ |
$2$ |
$2$ |
$1$ |
4.0.2026512.4 |
$D_{4}$ |
simple |
| 2.157.abs_beq |
$2$ |
$\F_{157}$ |
$157$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 44 x + 796 x^{2} - 6908 x^{3} + 24649 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$114$ |
$[114, 24306, 3869058, 607604886, 95389760314, 14976083096418, 2351243401541946, 369145195585347294, 57955795552734381714, 9099059901020192623666]$ |
$18494$ |
$[18494, 599168612, 14972842581998, 369164445930636944, 9099133136795892008574, 224282896205750478399722468, 5528345241729894687096658349678, 136268175050183805709316919000829952, 3358874237877217088686928945524290071198, 82792891082528379376124826020040608326839972]$ |
$18$ |
$18$ |
$2$ |
$2$ |
$1$ |
4.0.1042688.2 |
$D_{4}$ |
simple |
| 2.157.abs_ber |
$2$ |
$\F_{157}$ |
$157$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 23 x + 157 x^{2} )( 1 - 21 x + 157 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$114$ |
$[114, 24308, 3869190, 607609444, 95389870314, 14976085134566, 2351243431015698, 369145195894053316, 57955795554070998270, 9099059900985319460468]$ |
$18495$ |
$[18495, 599219505, 14973354325440, 369167215558448025, 9099143629658139966975, 224282926729214720610324480, 5528345311029858061656974530455, 136268175164141150609051964434992425, 3358874237954681764596283625944779779520, 82792891082211066375259973471378171067611025]$ |
$18$ |
$18$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-11}) \), \(\Q(\sqrt{-187}) \) |
$C_2$, $C_2$ |
1.157.ax $\times$ 1.157.av |
| 2.157.abs_bes |
$2$ |
$\F_{157}$ |
$157$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 22 x + 157 x^{2} )^{2}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$114$ |
$[114, 24310, 3869322, 607613998, 95389979874, 14976087147430, 2351243459480442, 369145196171522398, 57955795554615614034, 9099059900933560926550]$ |
$18496$ |
$[18496, 599270400, 14973866073664, 369169982760960000, 9099154080552453998656, 224282956874025451071513600, 5528345377957398693307496425024, 136268175266567529371938280079360000, 3358874237986245404570400895720411134016, 82792891081740112374771600603770055173760000]$ |
$49$ |
$49$ |
$16$ |
$12$ |
$1$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
1.157.aw 2 |
| 2.157.abr_bdk |
$2$ |
$\F_{157}$ |
$157$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 25 x + 157 x^{2} )( 1 - 18 x + 157 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$115$ |
$[115, 24329, 3868690, 607574977, 95388881575, 14976065487206, 2351243131186435, 369145192334295073, 57955795523458575610, 9099059900862217602689]$ |
$18620$ |
$[18620, 599712960, 14971410031760, 369146271897849600, 9099049314400407049100, 224282632488891066591621120, 5528344606058318597392905710540, 136268173850073502470017832432000000, 3358874236180514455927160330234020977680, 82792891081090955197422752818732980742084800]$ |
$10$ |
$10$ |
$12$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-19}) \) |
$C_2$, $C_2$ |
1.157.az $\times$ 1.157.as |
| 2.157.abr_bdl |
$2$ |
$\F_{157}$ |
$157$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 43 x + 765 x^{2} - 6751 x^{3} + 24649 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$115$ |
$[115, 24331, 3868819, 607579315, 95388984130, 14976067398307, 2351243161126303, 369145192751482819, 57955795529013965383, 9099059900939207148886]$ |
$18621$ |
$[18621, 599763789, 14971910056641, 369148907776102821, 9099059097050910510336, 224282661109675891360218981, 5528344676454230151108316556241, 136268174004076353645523700148211749, 3358874236502481489729030820578090319269, 82792891081791487690021143283717020518682624]$ |
$16$ |
$16$ |
$2$ |
$2$ |
$1$ |
4.0.76725.1 |
$D_{4}$ |
simple |
| 2.157.abr_bdm |
$2$ |
$\F_{157}$ |
$157$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 43 x + 766 x^{2} - 6751 x^{3} + 24649 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$115$ |
$[115, 24333, 3868948, 607583649, 95389086255, 14976069285306, 2351243190127051, 369145193140124001, 57955795533849225556, 9099059901000517505893]$ |
$18622$ |
$[18622, 599814620, 14972410086112, 369151541228566400, 9099068838686784722902, 224282689369508475173822720, 5528344744642042404641973682726, 136268174147541377949116290207116800, 3358874236782712839667380887323231610848, 82792891082349354300978006170196450138863100]$ |
$12$ |
$12$ |
$2$ |
$2$ |
$1$ |
4.0.8788268.1 |
$D_{4}$ |
simple |
| 2.157.abr_bdn |
$2$ |
$\F_{157}$ |
$157$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 43 x + 767 x^{2} - 6751 x^{3} + 24649 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$115$ |
$[115, 24335, 3869077, 607587979, 95389187950, 14976071148215, 2351243218190485, 369145193500359379, 57955795537971921979, 9099059901046463578550]$ |
$18623$ |
$[18623, 599865453, 14972910120179, 369154172255258709, 9099078539308055397968, 224282717268568553288328525, 5528344810626001717104544855667, 136268174280520536264714382854039909, 3358874237021646990600199616606523239711, 82792891082767420368296234167664413449808128]$ |
$21$ |
$21$ |
$2$ |
$2$ |
$1$ |
4.0.1123949.1 |
$D_{4}$ |
simple |
| 2.157.abr_bdo |
$2$ |
$\F_{157}$ |
$157$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 43 x + 768 x^{2} - 6751 x^{3} + 24649 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$115$ |
$[115, 24337, 3869206, 607592305, 95389289215, 14976072987046, 2351243245318411, 369145193832329665, 57955795541389611214, 9099059901077359346137]$ |
$18624$ |
$[18624, 599916288, 14973410158848, 369156800856198144, 9099088198914748338624, 224282744807035861125513216, 5528344874410354447796908020672, 136268174403065771757424126693060608, 3358874237219721889092146068556073249024, 82792891083048542808252887793566045388857088]$ |
$32$ |
$32$ |
$2$ |
$2$ |
$1$ |
4.0.650133.2 |
$D_{4}$ |
simple |
| 2.157.abr_bdp |
$2$ |
$\F_{157}$ |
$157$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 43 x + 769 x^{2} - 6751 x^{3} + 24649 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$115$ |
$[115, 24339, 3869335, 607596627, 95389390050, 14976074801811, 2351243271512635, 369145194136175523, 57955795544109840535, 9099059901093517862614]$ |
$18625$ |
$[18625, 599967125, 14973910202125, 369159427031403125, 9099097817506889440000, 224282771985090134273586125, 5528344935999346956211367309125, 136268174515229009873540761974453125, 3358874237377374943414551050796167172625, 82792891083195570117582971185291655800320000]$ |
$25$ |
$25$ |
$2$ |
$2$ |
$1$ |
4.0.9853997.1 |
$D_{4}$ |
simple |
| 2.157.abr_bdq |
$2$ |
$\F_{157}$ |
$157$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 24 x + 157 x^{2} )( 1 - 19 x + 157 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$115$ |
$[115, 24341, 3869464, 607600945, 95389490455, 14976076592522, 2351243296774963, 369145194412037569, 57955795546140147928, 9099059901095251256861]$ |
$18626$ |
$[18626, 600017964, 14974410250016, 369162050780892096, 9099107395084504689386, 224282798802911108487741696, 5528344995397225602032872909706, 136268174617062158340550353927976704, 3358874237495043023545418908875609768224, 82792891083211342375663207913014851962022924]$ |
$12$ |
$12$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-13}) \), \(\Q(\sqrt{-267}) \) |
$C_2$, $C_2$ |
1.157.ay $\times$ 1.157.at |
| 2.157.abr_bdr |
$2$ |
$\F_{157}$ |
$157$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 43 x + 771 x^{2} - 6751 x^{3} + 24649 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$115$ |
$[115, 24343, 3869593, 607605259, 95389590430, 14976078359191, 2351243321107201, 369145194660056371, 57955795547488062091, 9099059901082870732918]$ |
$18627$ |
$[18627, 600068805, 14974910302527, 369164672104683525, 9099116931647620166352, 224282825260678519690712805, 5528345052608236745140244810631, 136268174708617107167131536172961925, 3358874237573162461169429333711853351723, 82792891083098691246695816813556164489606400]$ |
$28$ |
$28$ |
$2$ |
$2$ |
$1$ |
4.0.7079373.1 |
$D_{4}$ |
simple |
| 2.157.abr_bds |
$2$ |
$\F_{157}$ |
$157$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 43 x + 772 x^{2} - 6751 x^{3} + 24649 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$115$ |
$[115, 24345, 3869722, 607609569, 95389689975, 14976080101830, 2351243344511155, 369145194880372449, 57955795548161102434, 9099059901056686570225]$ |
$18628$ |
$[18628, 600119648, 14975410359664, 369167291002795904, 9099126427196262042868, 224282851358572103973324800, 5528345107636626745607400417652, 136268174789945728643157264236178944, 3358874237612169049677939186143784127216, 82792891082860439981892287845453684479858528]$ |
$24$ |
$24$ |
$2$ |
$2$ |
$1$ |
4.0.1316684.1 |
$D_{4}$ |
simple |
| 2.157.abr_bdt |
$2$ |
$\F_{157}$ |
$157$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 43 x + 773 x^{2} - 6751 x^{3} + 24649 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$115$ |
$[115, 24347, 3869851, 607613875, 95389789090, 14976081820451, 2351243366988631, 369145195073126275, 57955795548166779079, 9099059901017008123862]$ |
$18629$ |
$[18629, 600170493, 14975910421433, 369169907475247749, 9099135881730456583424, 224282877096771597595050261, 5528345160486641963704586052857, 136268174861099877339696579208513893, 3358874237612498044168984338686316961949, 82792891082499403421657157965423165736357888]$ |
$16$ |
$16$ |
$2$ |
$2$ |
$1$ |
4.0.3447093.1 |
$D_{4}$ |
simple |
| 2.157.abr_bdu |
$2$ |
$\F_{157}$ |
$157$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 23 x + 157 x^{2} )( 1 - 20 x + 157 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$115$ |
$[115, 24349, 3869980, 607618177, 95389887775, 14976083515066, 2351243388541435, 369145195238458273, 57955795547512592860, 9099059900964143824789]$ |
$18630$ |
$[18630, 600221340, 14976410487840, 369172521522057600, 9099145295250230145150, 224282902475456736984564480, 5528345211162528759899612339310, 136268174922131390109016381571520000, 3358874237574584161447281534580228473120, 82792891082018387997771787026390994695056700]$ |
$12$ |
$12$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-11}) \), \(\Q(\sqrt{-57}) \) |
$C_2$, $C_2$ |
1.157.ax $\times$ 1.157.au |
| 2.157.abr_bdv |
$2$ |
$\F_{157}$ |
$157$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 43 x + 775 x^{2} - 6751 x^{3} + 24649 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$115$ |
$[115, 24351, 3870109, 607622475, 95389986030, 14976085185687, 2351243409171373, 369145195376508819, 57955795546206035323, 9099059900898401180086]$ |
$18631$ |
$[18631, 600272189, 14976910558891, 369175133143244021, 9099154667755609177936, 224282927494807258740301661, 5528345259668533494859093476571, 136268174973092086084583215224950309, 3358874237498861580024230264230938073879, 82792891081420191735578133697284382237780224]$ |
$9$ |
$9$ |
$2$ |
$2$ |
$1$ |
4.0.618725.3 |
$D_{4}$ |
simple |
| 2.157.abr_bdw |
$2$ |
$\F_{157}$ |
$157$ |
|
|
✓ |
✓ |
|
|
✓ |
|
$( 1 - 22 x + 157 x^{2} )( 1 - 21 x + 157 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$115$ |
$[115, 24353, 3870238, 607626769, 95390083855, 14976086832326, 2351243428880251, 369145195487418241, 57955795544254588726, 9099059900820086773193]$ |
$18632$ |
$[18632, 600323040, 14977410634592, 369177742338825600, 9099163999246620224552, 224282952155002899631011840, 5528345306008902529449690412136, 136268175014033766681065061746419200, 3358874237385763940117914659130226769248, 82792891080707604256162531404764085951583200]$ |
$0$ |
$0$ |
$8$ |
$4$ |
$1$ |
\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-187}) \) |
$C_2$, $C_2$ |
1.157.aw $\times$ 1.157.av |
| 2.157.abq_bcl |
$2$ |
$\F_{157}$ |
$157$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 25 x + 157 x^{2} )( 1 - 17 x + 157 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$116$ |
$[116, 24364, 3869138, 607574452, 95388753116, 14976062915686, 2351243106900188, 369145192385677348, 57955795529350311866, 9099059900966503830364]$ |
$18753$ |
$[18753, 600564825, 14973142019472, 369145952946815625, 9099037060900462777353, 224282593977641043922022400, 5528344548955445686546105328097, 136268173869041022319397365541015625, 3358874236521974717729885950957062317328, 82792891082039861829875688205983327177311625]$ |
$24$ |
$24$ |
$12$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-339}) \) |
$C_2$, $C_2$ |
1.157.az $\times$ 1.157.ar |
| 2.157.abq_bcm |
$2$ |
$\F_{157}$ |
$157$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 42 x + 740 x^{2} - 6594 x^{3} + 24649 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$116$ |
$[116, 24366, 3869264, 607578550, 95388845936, 14976064561902, 2351243131510340, 369145192721063134, 57955795533962867828, 9099059901035935172286]$ |
$18754$ |
$[18754, 600615604, 14973630361906, 369148442963009616, 9099045914923550451634, 224282618631485863436987476, 5528344606819898099053242121474, 136268173992847073153341080266486784, 3358874236789299067988812006043780742514, 82792891082671621769040371512086864971770324]$ |
$8$ |
$8$ |
$2$ |
$2$ |
$1$ |
4.0.11246400.2 |
$D_{4}$ |
simple |
| 2.157.abq_bcn |
$2$ |
$\F_{157}$ |
$157$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 42 x + 741 x^{2} - 6594 x^{3} + 24649 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$116$ |
$[116, 24368, 3869390, 607582644, 95388938336, 14976066185246, 2351243155259072, 369145193031254116, 57955795537965868550, 9099059901092647340768]$ |
$18755$ |
$[18755, 600666385, 14974118708780, 369150930553069225, 9099054728885539902275, 224282642942798781082162960, 5528344662658942713442381254155, 136268174107352583181361205846930825, 3358874237021296159378627106779393723340, 82792891083187649187180176675632999538411425]$ |
$26$ |
$26$ |
$2$ |
$2$ |
$1$ |
4.0.16410688.1 |
$D_{4}$ |
simple |
| 2.157.abq_bco |
$2$ |
$\F_{157}$ |
$157$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 42 x + 742 x^{2} - 6594 x^{3} + 24649 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$116$ |
$[116, 24370, 3869516, 607586734, 95389030316, 14976067785730, 2351243178148148, 369145193316384094, 57955795541366288132, 9099059901136920888850]$ |
$18756$ |
$[18756, 600717168, 14974607060100, 369153415717012224, 9099063502786454981796, 224282666911759529415836400, 5528344716476727134137695917604, 136268174212606944035217071427170304, 3358874237218370181414518330354458796100, 82792891083590496853211790001807350680114928]$ |
$60$ |
$60$ |
$2$ |
$2$ |
$1$ |
4.0.137904.1 |
$D_{4}$ |
simple |
| 2.157.abq_bcp |
$2$ |
$\F_{157}$ |
$157$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 42 x + 743 x^{2} - 6594 x^{3} + 24649 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$116$ |
$[116, 24372, 3869642, 607590820, 95389121876, 14976069363366, 2351243200179332, 369145193576586820, 57955795544171091602, 9099059901169035489012]$ |
$18757$ |
$[18757, 600767953, 14975095415872, 369155898454856409, 9099072236626319631637, 224282690538547841150534656, 5528344768277398965732013427581, 136268174308659529627829830042763433, 3358874237380924797836772727547839286848, 82792891083882709523783746817875467138896113]$ |
$24$ |
$24$ |
$2$ |
$2$ |
$1$ |
4.0.1361808.7 |
$D_{4}$ |
simple |
| 2.157.abq_bcq |
$2$ |
$\F_{157}$ |
$157$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 42 x + 744 x^{2} - 6594 x^{3} + 24649 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$116$ |
$[116, 24374, 3869768, 607594902, 95389213016, 14976070918166, 2351243221354388, 369145193811995998, 57955795546387234916, 9099059901189269933414]$ |
$18758$ |
$[18758, 600818740, 14975583776102, 369158378766619600, 9099080930405157882278, 224282713823343449153557780, 5528344818065105812987947435782, 136268174395559696153283993674880000, 3358874237509363146610778823122525018198, 82792891084066823945460206976724912580103700]$ |
$32$ |
$32$ |
$2$ |
$2$ |
$1$ |
4.0.22403392.1 |
$D_{4}$ |
simple |
| 2.157.abq_bcr |
$2$ |
$\F_{157}$ |
$157$ |
✓ |
|
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 42 x + 745 x^{2} - 6594 x^{3} + 24649 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$116$ |
$[116, 24376, 3869894, 607598980, 95389303736, 14976072450142, 2351243241675080, 369145194022745284, 57955795548021664958, 9099059901197902134136]$ |
$18759$ |
$[18759, 600869529, 14976072140796, 369160856652319641, 9099089584122993853359, 224282736766326086447513616, 5528344865843995280839033881159, 136268174473356782086828977667358889, 3358874237604087839927028131341343698524, 82792891084145368856904730378160902779672249]$ |
$36$ |
$36$ |
$4$ |
$12$ |
$6$ |
\(\Q(\sqrt{-3}, \sqrt{10})\) |
$C_2^2$ |
simple |
| 2.157.abq_bcs |
$2$ |
$\F_{157}$ |
$157$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 24 x + 157 x^{2} )( 1 - 18 x + 157 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$116$ |
$[116, 24378, 3870020, 607603054, 95389394036, 14976073959306, 2351243261143172, 369145194208968286, 57955795549081319540, 9099059901195209123418]$ |
$18760$ |
$[18760, 600920320, 14976560509960, 369163332111974400, 9099098197779851753800, 224282759367675486210853120, 5528344911618214974390870685960, 136268174542100108184880654535884800, 3358874237665500964201116686688911665480, 82792891084120864991064052508117158554937600]$ |
$112$ |
$112$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-13}) \), \(\Q(\sqrt{-19}) \) |
$C_2$, $C_2$ |
1.157.ay $\times$ 1.157.as |