| Label |
Dimension |
Base field |
Base char. |
Simple |
Geom. simple |
Primitive |
Ordinary |
Almost ordinary |
Supersingular |
Princ. polarizable |
Jacobian |
L-polynomial |
Newton slopes |
Newton elevation |
$p$-rank |
$p$-corank |
Angle rank |
Angle corank |
$\mathbb{F}_q$ points on curve |
$\mathbb{F}_{q^k}$ points on curve |
$\mathbb{F}_q$ points on variety |
$\mathbb{F}_{q^k}$ points on variety |
Jacobians |
Hyperelliptic Jacobians |
Num. twists |
Max. twist degree |
End. degree |
Number fields |
Galois groups |
Isogeny factors |
| 2.151.abw_bhu |
$2$ |
$\F_{151}$ |
$151$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 24 x + 151 x^{2} )^{2}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$104$ |
$[104, 22254, 3437048, 519826654, 78502202504, 11853907931598, 1789940641095704, 270281038469240254, 40812436766729108648, 6162677950513835182254]$ |
$16384$ |
$[16384, 507510784, 11833600000000, 270250393819152384, 6162636874167926800384, 140515176598223257600000000, 3203887514313178218908024848384, 73051839663545340250166056382889984, 1665654994449225659328672411961600000000, 37978599520657891009388709152753685977104384]$ |
$3$ |
$3$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-7}) \) |
$C_2$ |
1.151.ay 2 |
| 2.151.abv_bgw |
$2$ |
$\F_{151}$ |
$151$ |
|
|
✓ |
✓ |
|
|
✓ |
|
$( 1 - 24 x + 151 x^{2} )( 1 - 23 x + 151 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$105$ |
$[105, 22301, 3438252, 519850201, 78502591755, 11853913590398, 1789940714299605, 270281039302827601, 40812436774676774052, 6162677950565993648501]$ |
$16512$ |
$[16512, 508569600, 11837741760000, 270262634871398400, 6162667431330591088512, 140515243677127807488000000, 3203887645343816025925781219712, 73051839888848193909556092299673600, 1665654994773589251034663212283035840000, 37978599520979326839257097094532400810240000]$ |
$0$ |
$0$ |
$12$ |
$6$ |
$1$ |
\(\Q(\sqrt{-7}) \), \(\Q(\sqrt{-3}) \) |
$C_2$, $C_2$ |
1.151.ay $\times$ 1.151.ax |
| 2.151.abu_bfx |
$2$ |
$\F_{151}$ |
$151$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 46 x + 829 x^{2} - 6946 x^{3} + 22801 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$106$ |
$[106, 22344, 3439180, 519863460, 78502701786, 11853913084230, 1789940670731494, 270281038186097028, 40812436753533750484, 6162677950230281585224]$ |
$16639$ |
$[16639, 509536097, 11840932635364, 270269527094748713, 6162676068887461861759, 140515237677027927179571728, 3203887567359478744000812520111, 73051839587017094724609254616484553, 1665654993910690938730446383652995638756, 37978599518910441509228133881172413973829857]$ |
$3$ |
$3$ |
$2$ |
$2$ |
$1$ |
4.0.70208.1 |
$D_{4}$ |
simple |
| 2.151.abu_bfy |
$2$ |
$\F_{151}$ |
$151$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 24 x + 151 x^{2} )( 1 - 22 x + 151 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$106$ |
$[106, 22346, 3439318, 519868606, 78502841626, 11853916180778, 1789940729727046, 270281039182256446, 40812436768690023178, 6162677950439777559626]$ |
$16640$ |
$[16640, 509583360, 11841408800000, 270272202823434240, 6162687046819805216000, 140515274383258571596800000, 3203887672958019727448953084160, 73051839856260096947344604670197760, 1665654994529255359579911731547408800000, 37978599520201497731358217507822597284864000]$ |
$8$ |
$8$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-7}) \), \(\Q(\sqrt{-30}) \) |
$C_2$, $C_2$ |
1.151.ay $\times$ 1.151.aw |
| 2.151.abu_bfz |
$2$ |
$\F_{151}$ |
$151$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 23 x + 151 x^{2} )^{2}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$106$ |
$[106, 22348, 3439456, 519873748, 78502981006, 11853919249198, 1789940787503506, 270281040136414948, 40812436782624439456, 6162677950618152114748]$ |
$16641$ |
$[16641, 509630625, 11841884969616, 270274876478105625, 6162697988644771717641, 140515310756064379393440000, 3203887776374459191754659208841, 73051840114151048263813993294955625, 1665654995097952842803819397978410163216, 37978599521300762669128205541912355081640625]$ |
$8$ |
$8$ |
$24$ |
$12$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
1.151.ax 2 |
| 2.151.abt_bey |
$2$ |
$\F_{151}$ |
$151$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 45 x + 804 x^{2} - 6795 x^{3} + 22801 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$107$ |
$[107, 22385, 3439982, 519872649, 78502723277, 11853911218106, 1789940614878467, 270281037129719089, 40812436737969485762, 6162677950044229592825]$ |
$16766$ |
$[16766, 510457636, 11843690246264, 270274303634112544, 6162677755896230880026, 140515215556152294446046016, 3203887467385876094691980420666, 73051839301498169149061444156840064, 1665654993275475369196208999112915444824, 37978599517763862998073275872087906922043076]$ |
$2$ |
$2$ |
$2$ |
$2$ |
$1$ |
4.0.39304.1 |
$D_{4}$ |
simple |
| 2.151.abt_bez |
$2$ |
$\F_{151}$ |
$151$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 45 x + 805 x^{2} - 6795 x^{3} + 22801 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$107$ |
$[107, 22387, 3440117, 519877531, 78502850852, 11853913913647, 1789940663577467, 270281037907191523, 40812436749195383897, 6162677950193975786302]$ |
$16767$ |
$[16767, 510504849, 11844156000717, 270276842053038141, 6162687770964163730352, 140515247508871379687145369, 3203887554554197291041578056497, 73051839511634225666448572844763125, 1665654993733631626802398490768885564187, 37978599518686700562741035338153011105103104]$ |
$15$ |
$15$ |
$2$ |
$2$ |
$1$ |
4.0.4901.1 |
$D_{4}$ |
simple |
| 2.151.abt_bfa |
$2$ |
$\F_{151}$ |
$151$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 24 x + 151 x^{2} )( 1 - 21 x + 151 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$107$ |
$[107, 22389, 3440252, 519882409, 78502977977, 11853916582398, 1789940711151287, 270281038647265969, 40812436759376092052, 6162677950318241504829]$ |
$16768$ |
$[16768, 510552064, 11844621760000, 270279378397569024, 6162697750709291532928, 140515279144025809408000000, 3203887639708513672854262139008, 73051839711662315344142953812885504, 1665654994149131134494758265544315840000, 37978599519452510166279067411354617229993984]$ |
$4$ |
$4$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-7}) \), \(\Q(\sqrt{-163}) \) |
$C_2$, $C_2$ |
1.151.ay $\times$ 1.151.av |
| 2.151.abt_bfb |
$2$ |
$\F_{151}$ |
$151$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 45 x + 807 x^{2} - 6795 x^{3} + 22801 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$107$ |
$[107, 22391, 3440387, 519887283, 78503104652, 11853919224371, 1789940757601817, 270281039350098163, 40812436768520550197, 6162677950417428131006]$ |
$16769$ |
$[16769, 510599281, 11845087524119, 270281912667724525, 6162707695131643360304, 140515310461757858475873601, 3203887722852208247511262702379, 73051839901624530680624276695689525, 1665654994522338754238345731176559053749, 37978599520063765400387869232465861587830016]$ |
$11$ |
$11$ |
$2$ |
$2$ |
$1$ |
4.0.169525.1 |
$D_{4}$ |
simple |
| 2.151.abt_bfc |
$2$ |
$\F_{151}$ |
$151$ |
|
|
✓ |
✓ |
|
|
✓ |
|
$( 1 - 23 x + 151 x^{2} )( 1 - 22 x + 151 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$107$ |
$[107, 22393, 3440522, 519892153, 78503230877, 11853921839578, 1789940802930947, 270281040015843793, 40812436776637688582, 6162677950491936025873]$ |
$16770$ |
$[16770, 510646500, 11845553293080, 270284444863524000, 6162717604231248381750, 140515341462209801944584000, 3203887803988664022626694720630, 73051840081562951201095916444304000, 1665654994853618951301487224439126560120, 37978599520522933561222742717591136516562500]$ |
$0$ |
$0$ |
$12$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-30}) \) |
$C_2$, $C_2$ |
1.151.ax $\times$ 1.151.aw |
| 2.151.abs_bea |
$2$ |
$\F_{151}$ |
$151$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 44 x + 780 x^{2} - 6644 x^{3} + 22801 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$108$ |
$[108, 22426, 3440796, 519882886, 78502793028, 11853910915738, 1789940598889908, 270281036918538046, 40812436737763315116, 6162677950101115522426]$ |
$16894$ |
$[16894, 511381380, 11846490571726, 270279625517227920, 6162683231570557739854, 140515211971923585465874500, 3203887438767307439774915840254, 73051839244419937969692101362913280, 1665654993267061042749890777291753368606, 37978599518114432662101018351988670600914500]$ |
$8$ |
$8$ |
$2$ |
$2$ |
$1$ |
4.0.794880.2 |
$D_{4}$ |
simple |
| 2.151.abs_beb |
$2$ |
$\F_{151}$ |
$151$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 44 x + 781 x^{2} - 6644 x^{3} + 22801 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$108$ |
$[108, 22428, 3440928, 519887508, 78502908748, 11853913231758, 1789940638049028, 270281037496857828, 40812436745426176608, 6162677950195187892748]$ |
$16895$ |
$[16895, 511428545, 11846945923520, 270282028715768345, 6162692315967498684375, 140515239425827987014840320, 3203887508859808264477221180695, 73051839400728808759440343608592745, 1665654993579801092690473829647645737920, 37978599518694170384405340141052343179340625]$ |
$12$ |
$12$ |
$2$ |
$2$ |
$1$ |
4.0.88625.1 |
$D_{4}$ |
simple |
| 2.151.abs_bec |
$2$ |
$\F_{151}$ |
$151$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 24 x + 151 x^{2} )( 1 - 20 x + 151 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$108$ |
$[108, 22430, 3441060, 519892126, 78503024028, 11853915522302, 1789940676173268, 270281038042100926, 40812436752205391820, 6162677950268794289630]$ |
$16896$ |
$[16896, 511475712, 11847401280000, 270284429839564800, 6162701365826267091456, 140515266577743488471040000, 3203887577099935766657904984576, 73051839548097679180336740905779200, 1665654993856477384737265139496909120000, 37978599519147782903462256493476079573696512]$ |
$36$ |
$36$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-7}) \), \(\Q(\sqrt{-51}) \) |
$C_2$, $C_2$ |
1.151.ay $\times$ 1.151.au |
| 2.151.abs_bed |
$2$ |
$\F_{151}$ |
$151$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 44 x + 783 x^{2} - 6644 x^{3} + 22801 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$108$ |
$[108, 22432, 3441192, 519896740, 78503138868, 11853917787382, 1789940713264476, 270281038554415684, 40812436758109225272, 6162677950322293433152]$ |
$16897$ |
$[16897, 511522881, 11847856641172, 270286828888636041, 6162710381146890151537, 140515293427812361763032464, 3203887643490997773226453144033, 73051839686566643811236156333005449, 1665654994097427214093643333330516514772, 37978599519477480895600350626340409773687201]$ |
$12$ |
$12$ |
$2$ |
$2$ |
$1$ |
4.0.1134864.2 |
$D_{4}$ |
simple |
| 2.151.abs_bee |
$2$ |
$\F_{151}$ |
$151$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 44 x + 784 x^{2} - 6644 x^{3} + 22801 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$108$ |
$[108, 22434, 3441324, 519901350, 78503253268, 11853920027010, 1789940749324500, 270281039033950398, 40812436763145931980, 6162677950356043069474]$ |
$16898$ |
$[16898, 511570052, 11848312007042, 270289225863000848, 6162719361929395148898, 140515319976176878994145668, 3203887708036302111301874859938, 73051839816175784257686972004057088, 1665654994302987488081713603849370807618, 37978599519685469035192966544654943354652932]$ |
$12$ |
$12$ |
$2$ |
$2$ |
$1$ |
4.0.643328.1 |
$D_{4}$ |
simple |
| 2.151.abs_bef |
$2$ |
$\F_{151}$ |
$151$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 23 x + 151 x^{2} )( 1 - 21 x + 151 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$108$ |
$[108, 22436, 3441456, 519905956, 78503367228, 11853922241198, 1789940784355188, 270281039480853316, 40812436767323757456, 6162677950370399971076]$ |
$16899$ |
$[16899, 511617225, 11848767377616, 270291620762678025, 6162728308173809461779, 140515346222979312443040000, 3203887770739156608213980939619, 73051839936965169151932973194297225, 1665654994473494726142309750250684635216, 37978599519773945996137253486911233594755625]$ |
$7$ |
$7$ |
$12$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-163}) \) |
$C_2$, $C_2$ |
1.151.ax $\times$ 1.151.av |
| 2.151.abs_beg |
$2$ |
$\F_{151}$ |
$151$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 22 x + 151 x^{2} )^{2}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$108$ |
$[108, 22438, 3441588, 519910558, 78503480748, 11853924429958, 1789940818358388, 270281039895272638, 40812436770650937708, 6162677950365719936998]$ |
$16900$ |
$[16900, 511664400, 11849222752900, 270294013587686400, 6162737219880160562500, 140515372168361934564272400, 3203887831602869091504666040900, 73051840048974854152915243011686400, 1665654994609285059834996236927182720900, 37978599519745104453333210394360819850250000]$ |
$24$ |
$24$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-30}) \) |
$C_2$ |
1.151.aw 2 |
| 2.151.abr_bdb |
$2$ |
$\F_{151}$ |
$151$ |
✓ |
✓ |
✓ |
|
✓ |
|
✓ |
✓ |
$1 - 43 x + 755 x^{2} - 6493 x^{3} + 22801 x^{4}$ |
$[0,\frac{1}{2},\frac{1}{2},1]$ |
$1$ |
$1$ |
$1$ |
$2$ |
$0$ |
$109$ |
$[109, 22463, 3441361, 519885139, 78502686364, 11853907643459, 1789940543224075, 270281036275521235, 40812436733362633795, 6162677950107450320318]$ |
$17021$ |
$[17021, 512212953, 11848433144939, 270280796494399677, 6162674858157498204656, 140515173182628752832724617, 3203887339128773179716857471879, 73051839070624687263048068142717333, 1665654993087458514698967835113349679609, 37978599518153471981389967908521042263432448]$ |
$4$ |
$4$ |
$2$ |
$2$ |
$1$ |
4.0.620157.1 |
$D_{4}$ |
simple |
| 2.151.abr_bdc |
$2$ |
$\F_{151}$ |
$151$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 43 x + 756 x^{2} - 6493 x^{3} + 22801 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$109$ |
$[109, 22465, 3441490, 519889513, 78502791499, 11853909649978, 1789940575520773, 270281036734205809, 40812436739407535998, 6162677950186419007465]$ |
$17022$ |
$[17022, 512260068, 11848878092088, 270283070710905888, 6162683111582440111482, 140515196967729801496680768, 3203887396937944740562756239258, 73051839194598429698536963380435072, 1665654993334165703485336027574551498008, 37978599518640130568429751910729553694927108]$ |
$8$ |
$8$ |
$2$ |
$2$ |
$1$ |
4.0.2796552.1 |
$D_{4}$ |
simple |
| 2.151.abr_bdd |
$2$ |
$\F_{151}$ |
$151$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 43 x + 757 x^{2} - 6493 x^{3} + 22801 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$109$ |
$[109, 22467, 3441619, 519893883, 78502896204, 11853911632287, 1789940606865709, 270281037163577763, 40812436744700494879, 6162677950248698637502]$ |
$17023$ |
$[17023, 512307185, 11849323043773, 270285342852312125, 6162691331253845397808, 140515220465848730038906265, 3203887453043519129935291784833, 73051839310649526838714655025387125, 1665654993550184253006353541875112319003, 37978599519023939871205559201289873801504000]$ |
$12$ |
$12$ |
$2$ |
$2$ |
$1$ |
4.0.3940085.2 |
$D_{4}$ |
simple |
| 2.151.abr_bde |
$2$ |
$\F_{151}$ |
$151$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 24 x + 151 x^{2} )( 1 - 19 x + 151 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$109$ |
$[109, 22469, 3441748, 519898249, 78503000479, 11853913590398, 1789940637260689, 270281037563778289, 40812436749249145948, 6162677950294609904429]$ |
$17024$ |
$[17024, 512354304, 11849768000000, 270287612918636544, 6162699517171739341184, 140515243677127807488000000, 3203887507448728994412731886464, 73051839418816140210450551173054464, 1665654993735825787033451092380008000000, 37978599519306876223560726258820284845942784]$ |
$26$ |
$26$ |
$12$ |
$6$ |
$1$ |
\(\Q(\sqrt{-7}) \), \(\Q(\sqrt{-3}) \) |
$C_2$, $C_2$ |
1.151.ay $\times$ 1.151.at |
| 2.151.abr_bdf |
$2$ |
$\F_{151}$ |
$151$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 43 x + 759 x^{2} - 6493 x^{3} + 22801 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$109$ |
$[109, 22471, 3441877, 519902611, 78503104324, 11853915524323, 1789940666707519, 270281037934948531, 40812436753061115427, 6162677950324472574526]$ |
$17025$ |
$[17025, 512401425, 11850212960775, 270289880909897325, 6162707669336147310000, 140515266601709303035370625, 3203887560156806980759865036475, 73051839519136418367278890159391925, 1665654993891401550272246072427656980725, 37978599519490910242099052858190042354720000]$ |
$20$ |
$20$ |
$2$ |
$2$ |
$1$ |
4.0.157437.1 |
$D_{4}$ |
simple |
| 2.151.abr_bdg |
$2$ |
$\F_{151}$ |
$151$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 43 x + 760 x^{2} - 6493 x^{3} + 22801 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$109$ |
$[109, 22473, 3442006, 519906969, 78503207739, 11853917434074, 1789940695208005, 270281038277229585, 40812436756144020250, 6162677950338605486593]$ |
$17026$ |
$[17026, 512448548, 11850657926104, 270292146826112672, 6162715787747094763606, 140515289239735486035781952, 3203887611170985735929192754454, 73051839611648496889400424729500288, 1665654994017222408362544291216684067384, 37978599519578006827663846176993156554879748]$ |
$16$ |
$16$ |
$2$ |
$2$ |
$1$ |
4.0.3192872.1 |
$D_{4}$ |
simple |
| 2.151.abr_bdh |
$2$ |
$\F_{151}$ |
$151$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 43 x + 761 x^{2} - 6493 x^{3} + 22801 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$109$ |
$[109, 22475, 3442135, 519911323, 78503310724, 11853919319663, 1789940722763953, 270281038590762499, 40812436758505468063, 6162677950337326552190]$ |
$17027$ |
$[17027, 512495673, 11851102895993, 270294410667300813, 6162723872404607252432, 140515311591348626007899073, 3203887660494497907062125720373, 73051839696390498383684116049998677, 1665654994113598847878341727195724583383, 37978599519570125166816964922337882136651008]$ |
$12$ |
$12$ |
$2$ |
$2$ |
$1$ |
4.0.2226237.2 |
$D_{4}$ |
simple |
| 2.151.abr_bdi |
$2$ |
$\F_{151}$ |
$151$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 23 x + 151 x^{2} )( 1 - 20 x + 151 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$109$ |
$[109, 22477, 3442264, 519915673, 78503413279, 11853921181102, 1789940749377169, 270281038875688273, 40812436760153057224, 6162677950320952755877]$ |
$17028$ |
$[17028, 512542800, 11851547870448, 270296672433480000, 6162731923308710418108, 140515333656690992634835200, 3203887708130576141490183733068, 73051839773400532483668837595680000, 1665654994180840976327826298046956741488, 37978599519469218733317863478127730751570000]$ |
$28$ |
$28$ |
$12$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-51}) \) |
$C_2$, $C_2$ |
1.151.ax $\times$ 1.151.au |
| 2.151.abr_bdj |
$2$ |
$\F_{151}$ |
$151$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 43 x + 763 x^{2} - 6493 x^{3} + 22801 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$109$ |
$[109, 22479, 3442393, 519920019, 78503515404, 11853923018403, 1789940775049459, 270281039132147859, 40812436761094376803, 6162677950289800155454]$ |
$17029$ |
$[17029, 512589929, 11851992849475, 270298932124668509, 6162739940459429993584, 140515355435904855764699225, 3203887754082453086736199499119, 73051839842716695849565088941072469, 1665654994219258522153379647354325518225, 37978599519277235289602636073010744132041984]$ |
$8$ |
$8$ |
$2$ |
$2$ |
$1$ |
4.0.435725.2 |
$D_{4}$ |
simple |
| 2.151.abr_bdk |
$2$ |
$\F_{151}$ |
$151$ |
|
|
✓ |
✓ |
|
|
✓ |
|
$( 1 - 22 x + 151 x^{2} )( 1 - 21 x + 151 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$109$ |
$[109, 22481, 3442522, 519924361, 78503617099, 11853924831578, 1789940799782629, 270281039360282161, 40812436761337006582, 6162677950244183882201]$ |
$17030$ |
$[17030, 512637060, 11852437833080, 270301189740884640, 6162747923856791803250, 140515376929132485411144000, 3203887798353361390515526257170, 73051839904377072168256719487570560, 1665654994229160834731578948047697100120, 37978599518996116888263060969174691950526500]$ |
$0$ |
$0$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-30}) \), \(\Q(\sqrt{-163}) \) |
$C_2$, $C_2$ |
1.151.aw $\times$ 1.151.av |
| 2.151.abq_bcd |
$2$ |
$\F_{151}$ |
$151$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 42 x + 731 x^{2} - 6342 x^{3} + 22801 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$110$ |
$[110, 22500, 3441944, 519888868, 78502642130, 11853906181998, 1789940527603646, 270281036340127684, 40812436739122940936, 6162677950231909751940]$ |
$17149$ |
$[17149, 513046633, 11850438897616, 270282735185338953, 6162671385732877618669, 140515155858614021732186368, 3203887311169133859197321540509, 73051839088086585289534192600996617, 1665654993322550685532552613090345901904, 37978599518920475376346881802019029792465033]$ |
$12$ |
$12$ |
$2$ |
$2$ |
$1$ |
4.0.235152.2 |
$D_{4}$ |
simple |
| 2.151.abq_bce |
$2$ |
$\F_{151}$ |
$151$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 42 x + 732 x^{2} - 6342 x^{3} + 22801 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$110$ |
$[110, 22502, 3442070, 519892998, 78502737050, 11853907895702, 1789940553500930, 270281036686603198, 40812436743544385390, 6162677950290943756502]$ |
$17150$ |
$[17150, 513093700, 11850873447350, 270284882508130000, 6162678837237690503750, 140515176172708671440203300, 3203887357523733809170586946350, 73051839181732346544586401406080000, 1665654993503000607639866995118352695150, 37978599519284282934580403209941799592342500]$ |
$42$ |
$42$ |
$2$ |
$2$ |
$1$ |
4.0.286528.3 |
$D_{4}$ |
simple |
| 2.151.abq_bcf |
$2$ |
$\F_{151}$ |
$151$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 42 x + 733 x^{2} - 6342 x^{3} + 22801 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$110$ |
$[110, 22504, 3442196, 519897124, 78502831550, 11853909586438, 1789940578526210, 270281037007290244, 40812436747334011916, 6162677950336644848104]$ |
$17151$ |
$[17151, 513140769, 11851308001476, 270287027755495209, 6162686255773657399551, 140515196214543543487472400, 3203887402317498577415279780271, 73051839268407973933684134243583689, 1665654993657664500519806962756869205956, 37978599519565924044100139830745023875067809]$ |
$12$ |
$12$ |
$2$ |
$2$ |
$1$ |
4.0.9230400.2 |
$D_{4}$ |
simple |
| 2.151.abq_bcg |
$2$ |
$\F_{151}$ |
$151$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 24 x + 151 x^{2} )( 1 - 18 x + 151 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$110$ |
$[110, 22506, 3442322, 519901246, 78502925630, 11853911254218, 1789940602681250, 270281037302323006, 40812436750498853582, 6162677950369298203626]$ |
$17152$ |
$[17152, 513187840, 11851742560000, 270289170927452160, 6162693641340801824512, 140515215984260904371200000, 3203887445553585630688655510272, 73051839348149734852664563272253440, 1665654993786829400817018444317244640000, 37978599519767156158176844069444826039296000]$ |
$40$ |
$40$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-7}) \), \(\Q(\sqrt{-70}) \) |
$C_2$, $C_2$ |
1.151.ay $\times$ 1.151.as |
| 2.151.abq_bch |
$2$ |
$\F_{151}$ |
$151$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 42 x + 735 x^{2} - 6342 x^{3} + 22801 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$110$ |
$[110, 22508, 3442448, 519905364, 78503019290, 11853912899054, 1789940625967814, 270281037571835620, 40812436753045934384, 6162677950389188117468]$ |
$17153$ |
$[17153, 513234913, 11852177122928, 270291312024018457, 6162700993939147385033, 140515235482003020740376832, 3203887487235152435914259373257, 73051839420993883724005804872811113, 1665654993890781974925799904482992392432, 37978599519889731291641268483478900486713073]$ |
$30$ |
$30$ |
$2$ |
$2$ |
$1$ |
4.0.634432.1 |
$D_{4}$ |
simple |
| 2.151.abq_bci |
$2$ |
$\F_{151}$ |
$151$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 42 x + 736 x^{2} - 6342 x^{3} + 22801 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$110$ |
$[110, 22510, 3442574, 519909478, 78503112530, 11853914520958, 1789940648387666, 270281037815962174, 40812436754982269246, 6162677950396598001790]$ |
$17154$ |
$[17154, 513281988, 11852611690266, 270293451045211728, 6162708313568717775594, 140515254707912159396306148, 3203887527365356460183039293554, 73051839486976661996828427144041472, 1665654993969808518990103826178026878194, 37978599519935396022363209619858661143670308]$ |
$32$ |
$32$ |
$2$ |
$2$ |
$1$ |
4.0.1044288.5 |
$D_{4}$ |
simple |
| 2.151.abq_bcj |
$2$ |
$\F_{151}$ |
$151$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 42 x + 737 x^{2} - 6342 x^{3} + 22801 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$110$ |
$[110, 22512, 3442700, 519913588, 78503205350, 11853916119942, 1789940669942570, 270281038034836708, 40812436756314864020, 6162677950391810386752]$ |
$17155$ |
$[17155, 513329065, 11853046262020, 270295587991049625, 6162715600229536778875, 140515273662130587293132560, 3203887565947355170754462500795, 73051839546134298146896966594619625, 1665654994024194958903538207245330488580, 37978599519905891492730551869753265245821625]$ |
$20$ |
$20$ |
$2$ |
$2$ |
$1$ |
4.0.8101440.6 |
$D_{4}$ |
simple |
| 2.151.abq_bck |
$2$ |
$\F_{151}$ |
$151$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 42 x + 738 x^{2} - 6342 x^{3} + 22801 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$110$ |
$[110, 22514, 3442826, 519917694, 78503297750, 11853917696018, 1789940690634290, 270281038228593214, 40812436757050715486, 6162677950375106920754]$ |
$17156$ |
$[17156, 513376144, 11853480838196, 270297722861549824, 6162722853921628265876, 140515292344800571538371600, 3203887602984306035057635852196, 73051839598503007676621454060294144, 1665654994054226850309368072020819366436, 37978599519802953411128311340663586485914384]$ |
$36$ |
$36$ |
$2$ |
$2$ |
$1$ |
4.0.403600.3 |
$D_{4}$ |
simple |
| 2.151.abq_bcl |
$2$ |
$\F_{151}$ |
$151$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 23 x + 151 x^{2} )( 1 - 19 x + 151 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$110$ |
$[110, 22516, 3442952, 519921796, 78503389730, 11853919249198, 1789940710464590, 270281038397365636, 40812436757196811352, 6162677950346768370676]$ |
$17157$ |
$[17157, 513423225, 11853915418800, 270299855656730025, 6162730074645016196037, 140515310756064379393440000, 3203887638479366520692429864277, 73051839644118993115058949876081225, 1665654994060189378600516997887443409200, 37978599519628312053417679746345075219005625]$ |
$62$ |
$62$ |
$24$ |
$12$ |
$6$ |
\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-3}) \) |
$C_2$, $C_2$ |
1.151.ax $\times$ 1.151.at |
| 2.151.abq_bcm |
$2$ |
$\F_{151}$ |
$151$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 42 x + 740 x^{2} - 6342 x^{3} + 22801 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$110$ |
$[110, 22518, 3443078, 519925894, 78503481290, 11853920779494, 1789940729435234, 270281038541287870, 40812436756760130254, 6162677950307074622118]$ |
$17158$ |
$[17158, 513470308, 11854350003838, 270301986376607952, 6162737262399724617358, 140515328896064278274186692, 3203887672435694095430606459062, 73051839683018444017915088333165568, 1665654994042367358919568656894822988662, 37978599519383692264415068314639309682479748]$ |
$18$ |
$18$ |
$2$ |
$2$ |
$1$ |
4.0.2924352.1 |
$D_{4}$ |
simple |
| 2.151.abq_bcn |
$2$ |
$\F_{151}$ |
$151$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 42 x + 741 x^{2} - 6342 x^{3} + 22801 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$110$ |
$[110, 22520, 3443204, 519929988, 78503572430, 11853922286918, 1789940747547986, 270281038660493764, 40812436755747641756, 6162677950256304679640]$ |
$17159$ |
$[17159, 513517393, 11854784593316, 270304115021201353, 6162744417185777666519, 140515346764942535751424528, 3203887704856446227216950429799, 73051839715237536967545631450243977, 1665654994001045236158768372529992318884, 37978599519070813459371151713374911123958833]$ |
$12$ |
$12$ |
$2$ |
$2$ |
$1$ |
4.0.1433152.5 |
$D_{4}$ |
simple |
| 2.151.abq_bco |
$2$ |
$\F_{151}$ |
$151$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 22 x + 151 x^{2} )( 1 - 20 x + 151 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$110$ |
$[110, 22522, 3443330, 519934078, 78503663150, 11853923771482, 1789940764804610, 270281038755117118, 40812436754166306350, 6162677950194736667002]$ |
$17160$ |
$[17160, 513564480, 11855219187240, 270306241590528000, 6162751539003199569000, 140515364362841419551462720, 3203887735744780384170404631240, 73051839740812435572958032089088000, 1665654993936507084960024691725087209160, 37978599518691389625449911994499367342152000]$ |
$48$ |
$48$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-30}) \), \(\Q(\sqrt{-51}) \) |
$C_2$, $C_2$ |
1.151.aw $\times$ 1.151.au |
| 2.151.abq_bcp |
$2$ |
$\F_{151}$ |
$151$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 21 x + 151 x^{2} )^{2}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$110$ |
$[110, 22524, 3443456, 519938164, 78503753450, 11853925233198, 1789940781206870, 270281038825291684, 40812436752023075456, 6162677950122647827404]$ |
$17161$ |
$[17161, 513611569, 11855653785616, 270308366084605689, 6162758627852014639201, 140515381689903197556640000, 3203887765103854034585208899521, 73051839759779290469813006444142249, 1665654993849036609714910972188083107216, 37978599518247129323207682556604183437514209]$ |
$7$ |
$7$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-163}) \) |
$C_2$ |
1.151.av 2 |
| 2.151.abp_bbe |
$2$ |
$\F_{151}$ |
$151$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 41 x + 706 x^{2} - 6191 x^{3} + 22801 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$111$ |
$[111, 22533, 3442296, 519885993, 78502474381, 11853903078318, 1789940495781171, 270281036253334833, 40812436742188311336, 6162677950284477519373]$ |
$17276$ |
$[17276, 513788240, 11851648972016, 270281240465579840, 6162658217033516700516, 140515119067881238116880640, 3203887254208794503482607287316, 73051839064628123518964706597827840, 1665654993447655921083441427434581304176, 37978599519244433597593474621606695973650000]$ |
$8$ |
$8$ |
$2$ |
$2$ |
$1$ |
4.0.781625.2 |
$D_{4}$ |
simple |
| 2.151.abp_bbf |
$2$ |
$\F_{151}$ |
$151$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 41 x + 707 x^{2} - 6191 x^{3} + 22801 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$111$ |
$[111, 22535, 3442419, 519889891, 78502560276, 11853904559627, 1789940517366441, 270281036542453171, 40812436746147736809, 6162677950344140175230]$ |
$17277$ |
$[17277, 513835257, 11852073122643, 270283267133336925, 6162664960037073959952, 140515136627183218378942425, 3203887292845145088122589545247, 73051839142771327771902585959330325, 1665654993609249722780467069905822141753, 37978599519612115331307830860448427892038912]$ |
$16$ |
$16$ |
$2$ |
$2$ |
$1$ |
4.0.10258797.1 |
$D_{4}$ |
simple |
| 2.151.abp_bbg |
$2$ |
$\F_{151}$ |
$151$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 41 x + 708 x^{2} - 6191 x^{3} + 22801 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$111$ |
$[111, 22537, 3442542, 519893785, 78502645761, 11853906019162, 1789940538152703, 270281036808818449, 40812436749571359522, 6162677950392915658177]$ |
$17278$ |
$[17278, 513882276, 11852497277512, 270285291725336736, 6162671670856480737898, 140515153928378787627157824, 3203887330051318912683296515882, 73051839214764811358426764194505344, 1665654993748976108216593788269477493352, 37978599519912702924586303676332823295731076]$ |
$16$ |
$16$ |
$2$ |
$2$ |
$1$ |
4.0.15517224.1 |
$D_{4}$ |
simple |
| 2.151.abp_bbh |
$2$ |
$\F_{151}$ |
$151$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 41 x + 709 x^{2} - 6191 x^{3} + 22801 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$111$ |
$[111, 22539, 3442665, 519897675, 78502730836, 11853907456935, 1789940558141679, 270281037052558083, 40812436752465653949, 6162677950431057730174]$ |
$17279$ |
$[17279, 513929297, 11852921436629, 270287314241596253, 6162678349491758768784, 140515170971610209874259433, 3203887365830398264233756312041, 73051839280643012410948820030297333, 1665654993867099316453531249787109737051, 37978599520147760230664618370714073188863232]$ |
$28$ |
$28$ |
$2$ |
$2$ |
$1$ |
4.0.19092773.1 |
$D_{4}$ |
simple |
| 2.151.abp_bbi |
$2$ |
$\F_{151}$ |
$151$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 24 x + 151 x^{2} )( 1 - 17 x + 151 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$111$ |
$[111, 22541, 3442788, 519901561, 78502815501, 11853908872958, 1789940577335091, 270281037273799441, 40812436754837085708, 6162677950458819314501]$ |
$17280$ |
$[17280, 513976320, 11853345600000, 270289334682132480, 6162684995942929872000, 140515187757019749273600000, 3203887400185465429989469153920, 73051839340440356088498773277573120, 1665654993963883225118109572211297600000, 37978599520318845934263783031568663263488000]$ |
$42$ |
$42$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-7}) \), \(\Q(\sqrt{-35}) \) |
$C_2$, $C_2$ |
1.151.ay $\times$ 1.151.ar |
| 2.151.abp_bbj |
$2$ |
$\F_{151}$ |
$151$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 41 x + 711 x^{2} - 6191 x^{3} + 22801 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$111$ |
$[111, 22543, 3442911, 519905443, 78502899756, 11853910267243, 1789940595734661, 270281037472669843, 40812436756692111561, 6162677950476452495998]$ |
$17281$ |
$[17281, 514023345, 11853769767631, 270291353046962445, 6162691610210015952016, 140515204284749670119662545, 3203887433119602697313439969331, 73051839394191254576726419453749045, 1665654994039591350402280565428698777781, 37978599520427513553069132127664577319200000]$ |
$32$ |
$32$ |
$2$ |
$2$ |
$1$ |
4.0.271125.1 |
$D_{4}$ |
simple |
| 2.151.abp_bbk |
$2$ |
$\F_{151}$ |
$151$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 41 x + 712 x^{2} - 6191 x^{3} + 22801 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$111$ |
$[111, 22545, 3443034, 519909321, 78502983601, 11853911639802, 1789940613342111, 270281037649296561, 40812436758037179414, 6162677950484208521305]$ |
$17282$ |
$[17282, 514070372, 11854193939528, 270293369336103200, 6162698192293038998502, 140515220554942236848571200, 3203887464635892353717214567302, 73051839441930107087902672946076800, 1665654994094486847063118986258484614248, 37978599520475311439209370117545786166878212]$ |
$24$ |
$24$ |
$2$ |
$2$ |
$1$ |
4.0.21637832.2 |
$D_{4}$ |
simple |
| 2.151.abp_bbl |
$2$ |
$\F_{151}$ |
$151$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 41 x + 713 x^{2} - 6191 x^{3} + 22801 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$111$ |
$[111, 22547, 3443157, 519913195, 78503067036, 11853912990647, 1789940630159163, 270281037803806819, 40812436758878728317, 6162677950482337799102]$ |
$17283$ |
$[17283, 514117401, 11854618115697, 270295383549571821, 6162704742192021086448, 140515236567739714038602769, 3203887494737416686861919390077, 73051839483691299860920918744195029, 1665654994128832508422823806484934047127, 37978599520463782780735615073372757626731776]$ |
$26$ |
$26$ |
$2$ |
$2$ |
$1$ |
4.0.20399469.1 |
$D_{4}$ |
simple |
| 2.151.abp_bbm |
$2$ |
$\F_{151}$ |
$151$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 41 x + 714 x^{2} - 6191 x^{3} + 22801 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$111$ |
$[111, 22549, 3443280, 519917065, 78503150061, 11853914319790, 1789940646187539, 270281037936327793, 40812436759223188464, 6162677950471089900349]$ |
$17284$ |
$[17284, 514164432, 11855042296144, 270297395687385408, 6162711259906984376284, 140515252323284366410699008, 3203887523427257984559304848556, 73051839519509206161298372770594048, 1665654994142890766368719494203231669456, 37978599520394465603100442319760526333063632]$ |
$32$ |
$32$ |
$2$ |
$2$ |
$1$ |
4.0.4609737.2 |
$D_{4}$ |
simple |
| 2.151.abp_bbn |
$2$ |
$\F_{151}$ |
$151$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 41 x + 715 x^{2} - 6191 x^{3} + 22801 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$111$ |
$[111, 22551, 3443403, 519920931, 78503232676, 11853915627243, 1789940661428961, 270281038046986611, 40812436759076981193, 6162677950450713558526]$ |
$17285$ |
$[17285, 514211465, 11855466480875, 270299405749561085, 6162717745437951114000, 140515267821718458828979625, 3203887550708498534772792246215, 73051839549418186281177450837681365, 1665654994136923691353257308557772764625, 37978599520268892770636928087756667738656000]$ |
$18$ |
$18$ |
$2$ |
$2$ |
$1$ |
4.0.15949565.1 |
$D_{4}$ |
simple |