| Label |
Dimension |
Base field |
Base char. |
Simple |
Geom. simple |
Primitive |
Ordinary |
Almost ordinary |
Supersingular |
Princ. polarizable |
Jacobian |
L-polynomial |
Newton slopes |
Newton elevation |
$p$-rank |
$p$-corank |
Angle rank |
Angle corank |
$\mathbb{F}_q$ points on curve |
$\mathbb{F}_{q^k}$ points on curve |
$\mathbb{F}_q$ points on variety |
$\mathbb{F}_{q^k}$ points on variety |
Jacobians |
Hyperelliptic Jacobians |
Num. twists |
Max. twist degree |
End. degree |
Number fields |
Galois groups |
Isogeny factors |
| 2.101.abo_xe |
$2$ |
$\F_{101}$ |
$101$ |
|
|
✓ |
✓ |
|
|
✓ |
|
$( 1 - 20 x + 101 x^{2} )^{2}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$62$ |
$[62, 9806, 1026422, 104022798, 10509740302, 1061516744606, 107213503470982, 10828566765491998, 1093685270074296542, 110462212518288833006]$ |
$6724$ |
$[6724, 100080016, 1057528403044, 10824654530560000, 110458426856375841604, 1126821414603606093340816, 11494738729449101602169268964, 117257861343543831518833704960000, 1196147472832075913381197603334153284, 12201900396957637205446913456585801136016]$ |
$0$ |
$0$ |
$16$ |
$12$ |
$1$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
1.101.au 2 |
| 2.101.abn_wk |
$2$ |
$\F_{101}$ |
$101$ |
|
|
✓ |
✓ |
|
|
✓ |
|
$( 1 - 20 x + 101 x^{2} )( 1 - 19 x + 101 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$63$ |
$[63, 9845, 1027260, 104036721, 10509939003, 1061519293802, 107213533539903, 10828567095202561, 1093685273447230620, 110462212550378845805]$ |
$6806$ |
$[6806, 100470172, 1058390170400, 10826103101756800, 110460515188069639406, 1126824120622186651667200, 11494741953243944793919440446, 117257864913836724190359478003200, 1196147476521004235823213514532141600, 12201900400502371019330993586183874145212]$ |
$0$ |
$0$ |
$8$ |
$4$ |
$1$ |
\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-43}) \) |
$C_2$, $C_2$ |
1.101.au $\times$ 1.101.at |
| 2.101.abm_vq |
$2$ |
$\F_{101}$ |
$101$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 20 x + 101 x^{2} )( 1 - 18 x + 101 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$64$ |
$[64, 9882, 1027984, 104047118, 10510057904, 1061520365322, 107213539972064, 10828567088558878, 1093685272493679904, 110462212531818043002]$ |
$6888$ |
$[6888, 100840320, 1059134704488, 10827184822272000, 110461764828115357608, 1126825258060433628305280, 11494742642858562570829060008, 117257864841895158290140987392000, 1196147475478119862220800304069676648, 12201900398452103675384069946113919408000]$ |
$4$ |
$4$ |
$8$ |
$4$ |
$1$ |
\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-5}) \) |
$C_2$, $C_2$ |
1.101.au $\times$ 1.101.as |
| 2.101.abm_vr |
$2$ |
$\F_{101}$ |
$101$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 19 x + 101 x^{2} )^{2}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$64$ |
$[64, 9884, 1028098, 104050644, 10510137704, 1061521842998, 107213563608824, 10828567424913124, 1093685276820164698, 110462212582468858604]$ |
$6889$ |
$[6889, 100861849, 1059252640000, 10827551866803529, 110462603559245524609, 1126826826647265610240000, 11494745177039692125679716169, 117257868484129725570940604823369, 1196147480209932569641913720263840000, 12201900404047104834244842637221930968809]$ |
$2$ |
$2$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-43}) \) |
$C_2$ |
1.101.at 2 |
| 2.101.abl_uw |
$2$ |
$\F_{101}$ |
$101$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 20 x + 101 x^{2} )( 1 - 17 x + 101 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$65$ |
$[65, 9917, 1028600, 104054433, 10510114525, 1061520451562, 107213533801705, 10828566954321313, 1093685270657175080, 110462212513041103877]$ |
$6970$ |
$[6970, 101190460, 1059768175480, 10827945886576000, 110462359910318439250, 1126825349605784549674240, 11494741981312658584390557730, 117257863388294703733178659776000, 1196147473469561585394913972234921720, 12201900396377961435100993628974893401500]$ |
$2$ |
$2$ |
$8$ |
$4$ |
$1$ |
\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-115}) \) |
$C_2$, $C_2$ |
1.101.au $\times$ 1.101.ar |
| 2.101.abl_ux |
$2$ |
$\F_{101}$ |
$101$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 37 x + 543 x^{2} - 3737 x^{3} + 10201 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$65$ |
$[65, 9919, 1028711, 104057739, 10510185750, 1061521692103, 107213552234735, 10828567194872019, 1093685273459160401, 110462212542426961254]$ |
$6971$ |
$[6971, 101211949, 1059882976511, 10828290016271669, 110463108510454911376, 1126826666467397359709725, 11494743957583186093679167631, 117257865993114164235026023141349, 1196147476534051664269672486953266171, 12201900399623988258057610943724683440384]$ |
$3$ |
$3$ |
$2$ |
$2$ |
$1$ |
4.0.48725.1 |
$D_{4}$ |
simple |
| 2.101.abl_uy |
$2$ |
$\F_{101}$ |
$101$ |
|
|
✓ |
✓ |
|
|
✓ |
|
$( 1 - 19 x + 101 x^{2} )( 1 - 18 x + 101 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$65$ |
$[65, 9921, 1028822, 104061041, 10510256605, 1061522914518, 107213570040985, 10828567418269441, 1093685275866613982, 110462212563908055801]$ |
$6972$ |
$[6972, 101233440, 1059997780800, 10828633732076160, 110463853222916990412, 1126827964088244101376000, 11494745866654503310730304012, 117257868412188157480229651888640, 1196147479167048192823236804703675200, 12201900401996837489702302597643991156000]$ |
$0$ |
$0$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-43}) \), \(\Q(\sqrt{-5}) \) |
$C_2$, $C_2$ |
1.101.at $\times$ 1.101.as |
| 2.101.abk_uc |
$2$ |
$\F_{101}$ |
$101$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 20 x + 101 x^{2} )( 1 - 16 x + 101 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$66$ |
$[66, 9950, 1029114, 104059086, 10510124226, 1061519942702, 107213522676186, 10828566813247006, 1093685269480228674, 110462212509180620030]$ |
$7052$ |
$[7052, 101520592, 1060296753548, 10828429992140800, 110462461867056259052, 1126824809441507301902800, 11494740788506612100985410732, 117257861860662130976749024051200, 1196147472182352635949878370184448588, 12201900395951523847926187850837533692112]$ |
$4$ |
$4$ |
$8$ |
$4$ |
$1$ |
\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-37}) \) |
$C_2$, $C_2$ |
1.101.au $\times$ 1.101.aq |
| 2.101.abk_ud |
$2$ |
$\F_{101}$ |
$101$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 36 x + 523 x^{2} - 3636 x^{3} + 10201 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$66$ |
$[66, 9952, 1029222, 104062180, 10510187586, 1061520979102, 107213536973658, 10828566984941764, 1093685271318211662, 110462212527207974752]$ |
$7053$ |
$[7053, 101542041, 1060408421892, 10828752041586681, 110463127799548140573, 1126825909602128955049104, 11494742321389152162341826357, 117257863719870317499554974906089, 1196147474192527558352953946309238372, 12201900397942865336398229232380548599801]$ |
$8$ |
$8$ |
$2$ |
$2$ |
$1$ |
4.0.293904.5 |
$D_{4}$ |
simple |
| 2.101.abk_ue |
$2$ |
$\F_{101}$ |
$101$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 36 x + 524 x^{2} - 3636 x^{3} + 10201 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$66$ |
$[66, 9954, 1029330, 104065270, 10510250586, 1061521998450, 107213550704634, 10828567141836958, 1093685272833330594, 110462212539137973474]$ |
$7054$ |
$[7054, 101563492, 1060520093374, 10829073676944528, 110463789949315557934, 1126826991661982885138788, 11494743793535715982686412126, 117257865418820444084777046970368, 1196147475849590819213389255760353006, 12201900399260679390624500824741544826532]$ |
$8$ |
$8$ |
$2$ |
$2$ |
$1$ |
4.0.223488.6 |
$D_{4}$ |
simple |
| 2.101.abk_uf |
$2$ |
$\F_{101}$ |
$101$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 19 x + 101 x^{2} )( 1 - 17 x + 101 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$66$ |
$[66, 9956, 1029438, 104068356, 10510313226, 1061523000758, 107213563870626, 10828567284031876, 1093685274030109158, 110462212545131116676]$ |
$7055$ |
$[7055, 101584945, 1060631768000, 10829394898226905, 110464448316370721375, 1126828055633814865408000, 11494745205108413788254489095, 117257866958587658663724192373545, 1196147477158489909802940767587928000, 12201900399922695248816674063657671288625]$ |
$6$ |
$6$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-43}) \), \(\Q(\sqrt{-115}) \) |
$C_2$, $C_2$ |
1.101.at $\times$ 1.101.ar |
| 2.101.abk_ug |
$2$ |
$\F_{101}$ |
$101$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 18 x + 101 x^{2} )^{2}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$66$ |
$[66, 9958, 1029546, 104071438, 10510375506, 1061523986038, 107213576473146, 10828567411625758, 1093685274913063266, 110462212545347252998]$ |
$7056$ |
$[7056, 101606400, 1060743445776, 10829715705446400, 110465102900725904016, 1126829101530370747622400, 11494746556269355868476021776, 117257868340246589433657222758400, 1196147478124163816913818857127623056, 12201900399946570145504265958757904000000]$ |
$26$ |
$26$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-5}) \) |
$C_2$ |
1.101.as 2 |
| 2.101.abj_ti |
$2$ |
$\F_{101}$ |
$101$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 20 x + 101 x^{2} )( 1 - 15 x + 101 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$67$ |
$[67, 9981, 1029532, 104061473, 10510100327, 1061519139306, 107213511543947, 10828566724071073, 1093685269364585212, 110462212518351837381]$ |
$7134$ |
$[7134, 101830716, 1060726608864, 10828678339440000, 110462210690468571654, 1126823956621832570639616, 11494739594980090767609805494, 117257860895014573645526447040000, 1196147472055875084829163281536333024, 12201900396964596808108464666489861903516]$ |
$5$ |
$5$ |
$8$ |
$4$ |
$1$ |
\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-179}) \) |
$C_2$, $C_2$ |
1.101.au $\times$ 1.101.ap |
| 2.101.abj_tj |
$2$ |
$\F_{101}$ |
$101$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 35 x + 503 x^{2} - 3535 x^{3} + 10201 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$67$ |
$[67, 9983, 1029637, 104064363, 10510156502, 1061520001463, 107213522608637, 10828566847779283, 1093685270627184067, 110462212530968592998]$ |
$7135$ |
$[7135, 101852125, 1060835146315, 10828979143127125, 110462801103240634000, 1126824871819149245462125, 11494740781264537208760564715, 117257862234597199909891915897125, 1196147473436760855186875009363945935, 12201900398358271548469678726515940000000]$ |
$10$ |
$10$ |
$2$ |
$2$ |
$1$ |
4.0.37485.1 |
$D_{4}$ |
simple |
| 2.101.abj_tk |
$2$ |
$\F_{101}$ |
$101$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 35 x + 504 x^{2} - 3535 x^{3} + 10201 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$67$ |
$[67, 9985, 1029742, 104067249, 10510212327, 1061520847606, 107213533162747, 10828566958767489, 1093685271626746582, 110462212538901000825]$ |
$7136$ |
$[7136, 101873536, 1060943686784, 10829279532537344, 110463387838251777376, 1126825770017492936482816, 11494741912807938617395335776, 117257863436440415892299198142464, 1196147474529967654844382565547099264, 12201900399234502867635807145359733960576]$ |
$16$ |
$16$ |
$2$ |
$2$ |
$1$ |
4.0.63869.1 |
$D_{4}$ |
simple |
| 2.101.abj_tl |
$2$ |
$\F_{101}$ |
$101$ |
✓ |
✓ |
✓ |
|
✓ |
|
✓ |
✓ |
$1 - 35 x + 505 x^{2} - 3535 x^{3} + 10201 x^{4}$ |
$[0,\frac{1}{2},\frac{1}{2},1]$ |
$1$ |
$1$ |
$1$ |
$2$ |
$0$ |
$67$ |
$[67, 9987, 1029847, 104070131, 10510267802, 1061521677747, 107213543207747, 10828567057129123, 1093685272367374687, 110462212542288679302]$ |
$7137$ |
$[7137, 101894949, 1061052230277, 10829579507682741, 110463970895513194752, 1126826651229608392321869, 11494742989767901588599137757, 117257864501555957123544443293125, 1196147475339981704445937596167854017, 12201900399608713327443766881827622703104]$ |
$10$ |
$10$ |
$2$ |
$2$ |
$1$ |
4.0.836381.1 |
$D_{4}$ |
simple |
| 2.101.abj_tm |
$2$ |
$\F_{101}$ |
$101$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 19 x + 101 x^{2} )( 1 - 16 x + 101 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$67$ |
$[67, 9989, 1029952, 104073009, 10510322927, 1061522491898, 107213552745107, 10828567142957569, 1093685272853162752, 110462212541270632829]$ |
$7138$ |
$[7138, 101916364, 1061160776800, 10829879068575424, 110464550275036139578, 1126827515468240433760000, 11494744012302032772497447098, 117257865430955039393605370843904, 1196147475871280956388142524760431200, 12201900399496257661517985309459748821484]$ |
$4$ |
$4$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-43}) \), \(\Q(\sqrt{-37}) \) |
$C_2$, $C_2$ |
1.101.at $\times$ 1.101.aq |
| 2.101.abj_tn |
$2$ |
$\F_{101}$ |
$101$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 35 x + 507 x^{2} - 3535 x^{3} + 10201 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$67$ |
$[67, 9991, 1030057, 104075883, 10510377702, 1061523290071, 107213561776297, 10828567216346163, 1093685273088197587, 110462212535985252006]$ |
$7139$ |
$[7139, 101937781, 1061269326359, 10830178215227525, 110465125976831925904, 1126828362746133954101701, 11494744980567938874785091839, 117257866225648358752138973747525, 1196147476128335094820292680537785179, 12201900398912422801781514995523955062016]$ |
$12$ |
$12$ |
$2$ |
$2$ |
$1$ |
4.0.194525.1 |
$D_{4}$ |
simple |
| 2.101.abj_to |
$2$ |
$\F_{101}$ |
$101$ |
|
|
✓ |
✓ |
|
|
✓ |
|
$( 1 - 18 x + 101 x^{2} )( 1 - 17 x + 101 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$67$ |
$[67, 9993, 1030162, 104078753, 10510432127, 1061524072278, 107213570302787, 10828567277388193, 1093685273076558442, 110462212526570313873]$ |
$7140$ |
$[7140, 101959200, 1061377878960, 10830476947651200, 110465698000911928500, 1126829193076033919539200, 11494745894723226657257691060, 117257866886646091508983591795200, 1196147476115605535644723309874529840, 12201900397872427904967152489114644500000]$ |
$0$ |
$0$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-5}) \), \(\Q(\sqrt{-115}) \) |
$C_2$, $C_2$ |
1.101.as $\times$ 1.101.ar |
| 2.101.abi_so |
$2$ |
$\F_{101}$ |
$101$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 20 x + 101 x^{2} )( 1 - 14 x + 101 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$68$ |
$[68, 10010, 1029860, 104061966, 10510054228, 1061518264202, 107213503256788, 10828566704233246, 1093685270110674020, 110462212532815444730]$ |
$7216$ |
$[7216, 102120832, 1061063911600, 10828729631948800, 110461726193647959856, 1126823027682792998588800, 11494738706484609040476957616, 117257860680199336609437627187200, 1196147472871861425279723163573476400, 12201900398562278877039900607378330390912]$ |
$18$ |
$18$ |
$8$ |
$4$ |
$1$ |
\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-13}) \) |
$C_2$, $C_2$ |
1.101.au $\times$ 1.101.ao |
| 2.101.abi_sp |
$2$ |
$\F_{101}$ |
$101$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 34 x + 483 x^{2} - 3434 x^{3} + 10201 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$68$ |
$[68, 10012, 1029962, 104064660, 10510103868, 1061518979062, 107213511842876, 10828566795751524, 1093685271055620482, 110462212543284683052]$ |
$7217$ |
$[7217, 102142201, 1061169319952, 10829010024273161, 110462247919206521737, 1126823786520816071425024, 11494739627029327834842951953, 117257861671211127677510580263369, 1196147473905335452860407488170979472, 12201900399718734105744765273134889688201]$ |
$12$ |
$12$ |
$2$ |
$2$ |
$1$ |
4.0.140864.1 |
$D_{4}$ |
simple |
| 2.101.abi_sq |
$2$ |
$\F_{101}$ |
$101$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 34 x + 484 x^{2} - 3434 x^{3} + 10201 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$68$ |
$[68, 10014, 1030064, 104067350, 10510153168, 1061519678910, 107213519970100, 10828566876377758, 1093685271787072580, 110462212550161224174]$ |
$7218$ |
$[7218, 102163572, 1061274731202, 10829290002139728, 110462766071980729698, 1126824529423456228674708, 11494740498377640915480287058, 117257862544277692410495935198208, 1196147474705313838707028824974314338, 12201900400478332052686530659217489603732]$ |
$20$ |
$20$ |
$2$ |
$2$ |
$1$ |
4.0.2800448.4 |
$D_{4}$ |
simple |
| 2.101.abi_sr |
$2$ |
$\F_{101}$ |
$101$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 34 x + 485 x^{2} - 3434 x^{3} + 10201 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$68$ |
$[68, 10016, 1030166, 104070036, 10510202128, 1061520363758, 107213527639888, 10828566946199716, 1093685272308739646, 110462212553566075376]$ |
$7219$ |
$[7219, 102184945, 1061380145356, 10829569565560105, 110463280651980801379, 1126825256403457285450000, 11494741320682651341516058939, 117257863300349433087806353748745, 1196147475275853424730528400898821676, 12201900400854439449768716862710891478625]$ |
$8$ |
$8$ |
$2$ |
$2$ |
$1$ |
4.0.2848320.2 |
$D_{4}$ |
simple |
| 2.101.abi_ss |
$2$ |
$\F_{101}$ |
$101$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 34 x + 486 x^{2} - 3434 x^{3} + 10201 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$68$ |
$[68, 10018, 1030268, 104072718, 10510250748, 1061521033618, 107213534853668, 10828567005305118, 1093685272624323668, 110462212553619666498]$ |
$7220$ |
$[7220, 102206320, 1061485562420, 10829848714545920, 110463791659217012500, 1126825967473563122913520, 11494742094097462219663483220, 117257863940376232242184511467520, 1196147475621003020826880006437357620, 12201900400860359243597856698773040950000]$ |
$24$ |
$24$ |
$2$ |
$2$ |
$1$ |
4.0.158000.1 |
$D_{4}$ |
simple |
| 2.101.abi_st |
$2$ |
$\F_{101}$ |
$101$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 19 x + 101 x^{2} )( 1 - 15 x + 101 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$68$ |
$[68, 10020, 1030370, 104075396, 10510299028, 1061521688502, 107213541612868, 10828567053781636, 1093685272737519290, 110462212550441850180]$ |
$7221$ |
$[7221, 102227697, 1061590982400, 10830127449108825, 110464299093699696981, 1126826662646517688627200, 11494742818775176704706797741, 117257864465307452660135718352425, 1196147475744803404877369662234617600, 12201900400509330621994566607288077908337]$ |
$30$ |
$30$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-43}) \), \(\Q(\sqrt{-179}) \) |
$C_2$, $C_2$ |
1.101.at $\times$ 1.101.ap |
| 2.101.abi_su |
$2$ |
$\F_{101}$ |
$101$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 34 x + 488 x^{2} - 3434 x^{3} + 10201 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$68$ |
$[68, 10022, 1030472, 104078070, 10510346968, 1061522328422, 107213547918916, 10828567091716894, 1093685272652013812, 110462212544151902102]$ |
$7222$ |
$[7222, 102249076, 1061696405302, 10830405769260496, 110464802955439247062, 1126827341935064996901844, 11494743494868897999988609558, 117257864876091937382364550370304, 1196147475651287322748879545339055942, 12201900399814529040504620862110808808276]$ |
$18$ |
$18$ |
$2$ |
$2$ |
$1$ |
4.0.1306944.1 |
$D_{4}$ |
simple |
| 2.101.abi_sv |
$2$ |
$\F_{101}$ |
$101$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 34 x + 489 x^{2} - 3434 x^{3} + 10201 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$68$ |
$[68, 10024, 1030574, 104080740, 10510394568, 1061522953390, 107213553773240, 10828567119198468, 1093685272371487190, 110462212534868521224]$ |
$7223$ |
$[7223, 102270457, 1061801831132, 10830683675012633, 110465303244446113423, 1126828005351949129147408, 11494744122531729357899691383, 117257865173678009704215511429673, 1196147475344479488294176212141005308, 12201900398789066248910029128451229867257]$ |
$7$ |
$7$ |
$2$ |
$2$ |
$1$ |
4.0.669248.3 |
$D_{4}$ |
simple |
| 2.101.abi_sw |
$2$ |
$\F_{101}$ |
$101$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 18 x + 101 x^{2} )( 1 - 16 x + 101 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$68$ |
$[68, 10026, 1030676, 104083406, 10510441828, 1061523563418, 107213559177268, 10828567136313886, 1093685271899612036, 110462212522709830026]$ |
$7224$ |
$[7224, 102291840, 1061907259896, 10830961166376960, 110465799960730805304, 1126828652909914234224000, 11494744701916774080371232504, 117257865359013473176117745418240, 1196147474828396583352203155181959736, 12201900397445990317740117414325055856000]$ |
$16$ |
$16$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-5}) \), \(\Q(\sqrt{-37}) \) |
$C_2$, $C_2$ |
1.101.as $\times$ 1.101.aq |
| 2.101.abi_sx |
$2$ |
$\F_{101}$ |
$101$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 17 x + 101 x^{2} )^{2}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$68$ |
$[68, 10028, 1030778, 104086068, 10510488748, 1061524158518, 107213564132428, 10828567143150628, 1093685271240053618, 110462212507793374748]$ |
$7225$ |
$[7225, 102313225, 1062012691600, 10831238243365225, 110466293104303890625, 1126829284621704528793600, 11494745233177135519369549225, 117257865433045611604033817961225, 1196147474107047257748377731196707600, 12201900395798285664782612462375340765625]$ |
$11$ |
$11$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-115}) \) |
$C_2$ |
1.101.ar 2 |
| 2.101.abh_ru |
$2$ |
$\F_{101}$ |
$101$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 20 x + 101 x^{2} )( 1 - 13 x + 101 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$69$ |
$[69, 10037, 1030104, 104060913, 10509995529, 1061517473642, 107213499091509, 10828566746015233, 1093685271281186184, 110462212545080776877]$ |
$7298$ |
$[7298, 102390940, 1061314831928, 10828620076144000, 110461109271830282858, 1126822188488769060770560, 11494738259910388413973932698, 117257861132638378508723350464000, 1196147474152033339016868490829050808, 12201900399917134603409233145365118093500]$ |
$4$ |
$4$ |
$8$ |
$4$ |
$1$ |
\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-235}) \) |
$C_2$, $C_2$ |
1.101.au $\times$ 1.101.an |
| 2.101.abh_rv |
$2$ |
$\F_{101}$ |
$101$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 33 x + 463 x^{2} - 3333 x^{3} + 10201 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$69$ |
$[69, 10039, 1030203, 104063419, 10510039254, 1061518065343, 107213505820539, 10828566816964339, 1093685272069185693, 110462212554937505254]$ |
$7299$ |
$[7299, 102412269, 1061417112975, 10828880891406549, 110461568827269090384, 1126822816590701722303725, 11494738981353350606299469919, 117257861900915517796818995229669, 1196147475013856796858286526636891475, 12201900401005930628523339866552078256384]$ |
$15$ |
$15$ |
$2$ |
$2$ |
$1$ |
4.0.56725.1 |
$D_{4}$ |
simple |
| 2.101.abh_rw |
$2$ |
$\F_{101}$ |
$101$ |
✓ |
|
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 33 x + 464 x^{2} - 3333 x^{3} + 10201 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$69$ |
$[69, 10041, 1030302, 104065921, 10510082649, 1061518642998, 107213512138389, 10828566878619361, 1093685272684360902, 110462212562034408801]$ |
$7300$ |
$[7300, 102433600, 1061519396800, 10829141292038400, 110462024914912532500, 1126823429782635850240000, 11494739658712265560038351700, 117257862568551045602907739161600, 1196147475686664862753254570339851200, 12201900401789870296623583998234549640000]$ |
$24$ |
$24$ |
$4$ |
$12$ |
$6$ |
\(\Q(\sqrt{-3}, \sqrt{41})\) |
$C_2^2$ |
simple |
| 2.101.abh_rx |
$2$ |
$\F_{101}$ |
$101$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 33 x + 465 x^{2} - 3333 x^{3} + 10201 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$69$ |
$[69, 10043, 1030401, 104068419, 10510125714, 1061519206619, 107213518046445, 10828566931062595, 1093685273130056625, 110462212566475978118]$ |
$7301$ |
$[7301, 102454933, 1061621683409, 10829401278050677, 110462477534769893456, 1126824028077314413276717, 11494740292135732884582382409, 117257863136436110094447455961093, 1196147476174115710586704563767345429, 12201900402280495870583674072785589301248]$ |
$13$ |
$13$ |
$2$ |
$2$ |
$1$ |
4.0.6753277.1 |
$D_{4}$ |
simple |
| 2.101.abh_ry |
$2$ |
$\F_{101}$ |
$101$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 33 x + 466 x^{2} - 3333 x^{3} + 10201 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$69$ |
$[69, 10045, 1030500, 104070913, 10510168449, 1061519756218, 107213523546093, 10828566974376289, 1093685273409610548, 110462212568366161765]$ |
$7302$ |
$[7302, 102476268, 1061723972808, 10829660849454528, 110462926686850513182, 1126824611487480440310528, 11494740881772352230124857438, 117257863605461339687210117521152, 1196147476479859718461956040327096968, 12201900402489289738341573253013750901708]$ |
$22$ |
$22$ |
$2$ |
$2$ |
$1$ |
4.0.6825852.1 |
$D_{4}$ |
simple |
| 2.101.abh_rz |
$2$ |
$\F_{101}$ |
$101$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 33 x + 467 x^{2} - 3333 x^{3} + 10201 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$69$ |
$[69, 10047, 1030599, 104073403, 10510210854, 1061520291807, 107213528638719, 10828567008642643, 1093685273526353229, 110462212567808366502]$ |
$7303$ |
$[7303, 102497605, 1061826265003, 10829920006261125, 110463372371163787408, 1126825180025877020771845, 11494741427770723288103320483, 117257863976516843045655038821125, 1196147476607539468700941905966270943, 12201900402427674439410534743620056352000]$ |
$26$ |
$26$ |
$2$ |
$2$ |
$1$ |
4.0.37845.1 |
$D_{4}$ |
simple |
| 2.101.abh_sa |
$2$ |
$\F_{101}$ |
$101$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 19 x + 101 x^{2} )( 1 - 14 x + 101 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$69$ |
$[69, 10049, 1030698, 104075889, 10510252929, 1061520813398, 107213533325709, 10828567033943809, 1093685273483608098, 110462212564905457529]$ |
$7304$ |
$[7304, 102518944, 1061928560000, 10830178748481664, 110463814587719167784, 1126825733705247304960000, 11494741930279445791644664424, 117257864250492209083305789633024, 1196147476560789747844437909989360000, 12201900402107012691390139893125666855584]$ |
$18$ |
$18$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-43}) \), \(\Q(\sqrt{-13}) \) |
$C_2$, $C_2$ |
1.101.at $\times$ 1.101.ao |
| 2.101.abh_sb |
$2$ |
$\F_{101}$ |
$101$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 33 x + 469 x^{2} - 3333 x^{3} + 10201 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$69$ |
$[69, 10051, 1030797, 104078371, 10510294674, 1061521321003, 107213537608449, 10828567050361891, 1093685273284691457, 110462212559759758726]$ |
$7305$ |
$[7305, 102540285, 1062030857805, 10830437076127365, 110464253336526162000, 1126826272538334504379125, 11494742389447119516012580845, 117257864428276506963130791808485, 1196147476343237546652295839597386145, 12201900401538607416477339025837868544000]$ |
$20$ |
$20$ |
$2$ |
$2$ |
$1$ |
4.0.4535685.2 |
$D_{4}$ |
simple |
| 2.101.abh_sc |
$2$ |
$\F_{101}$ |
$101$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 33 x + 470 x^{2} - 3333 x^{3} + 10201 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$69$ |
$[69, 10053, 1030896, 104080849, 10510336089, 1061521814634, 107213541488325, 10828567057978945, 1093685272932912480, 110462212552473052893]$ |
$7306$ |
$[7306, 102561628, 1062133158424, 10830694989209472, 110464688617594333906, 1126826796537881892074752, 11494742805422344279057363234, 117257864510758286097927620955648, 1196147475958502060103680472182087704, 12201900400733701767977495043767536343548]$ |
$16$ |
$16$ |
$2$ |
$2$ |
$1$ |
4.0.3360492.1 |
$D_{4}$ |
simple |
| 2.101.abh_sd |
$2$ |
$\F_{101}$ |
$101$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 33 x + 471 x^{2} - 3333 x^{3} + 10201 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$69$ |
$[69, 10055, 1030995, 104083323, 10510377174, 1061522294303, 107213544966723, 10828567056876979, 1093685272431573213, 110462212543146581990]$ |
$7307$ |
$[7307, 102582973, 1062235461863, 10830952487739253, 110465120430933303632, 1126827305716632802971133, 11494743178353719941668068903, 117257864498825576150711031355557, 1196147475410194687397310319578224843, 12201900399703479156815429838758480996608]$ |
$7$ |
$7$ |
$2$ |
$2$ |
$1$ |
4.0.2192437.1 |
$D_{4}$ |
simple |
| 2.101.abh_se |
$2$ |
$\F_{101}$ |
$101$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 18 x + 101 x^{2} )( 1 - 15 x + 101 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$69$ |
$[69, 10057, 1031094, 104085793, 10510417929, 1061522760022, 107213548045029, 10828567047137953, 1093685271783968574, 110462212531881047377]$ |
$7308$ |
$[7308, 102604320, 1062337768128, 10831209571728000, 110465548776552747708, 1126827800087330634209280, 11494743508389846408227044668, 117257864393365887035104723008000, 1196147474701919031951702198646964928, 12201900398459063278046473555438021908000]$ |
$30$ |
$30$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-5}) \), \(\Q(\sqrt{-179}) \) |
$C_2$, $C_2$ |
1.101.as $\times$ 1.101.ap |
| 2.101.abh_sf |
$2$ |
$\F_{101}$ |
$101$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 33 x + 473 x^{2} - 3333 x^{3} + 10201 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$69$ |
$[69, 10059, 1031193, 104088259, 10510458354, 1061523211803, 107213550724629, 10828567028843779, 1093685270993386353, 110462212518776610054]$ |
$7309$ |
$[7309, 102625669, 1062440077225, 10831466241187029, 110465973654462399184, 1126828279662718845485725, 11494743795679323627066821329, 117257864195266208915736869737029, 1196147473837270901405419662733499725, 12201900397011518137367516745948766326784]$ |
$8$ |
$8$ |
$2$ |
$2$ |
$1$ |
4.0.391725.3 |
$D_{4}$ |
simple |
| 2.101.abh_sg |
$2$ |
$\F_{101}$ |
$101$ |
|
|
✓ |
✓ |
|
|
✓ |
|
$( 1 - 17 x + 101 x^{2} )( 1 - 16 x + 101 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$69$ |
$[69, 10061, 1031292, 104090721, 10510498449, 1061523649658, 107213553006909, 10828567002076321, 1093685270063107212, 110462212503932890901]$ |
$7310$ |
$[7310, 102647020, 1062542389160, 10831722496127680, 110466395064672047750, 1126828744455540959392000, 11494744040370751590929381990, 117257863905413012208639427326720, 1196147472819838307617325328712600040, 12201900395371848077628065457773916935500]$ |
$0$ |
$0$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-115}) \), \(\Q(\sqrt{-37}) \) |
$C_2$, $C_2$ |
1.101.ar $\times$ 1.101.aq |
| 2.101.abg_ra |
$2$ |
$\F_{101}$ |
$101$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 20 x + 101 x^{2} )( 1 - 12 x + 101 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$70$ |
$[70, 10062, 1030270, 104058638, 10509932150, 1061516867742, 107213499195950, 10828566828713758, 1093685272427891110, 110462212550586827502]$ |
$7380$ |
$[7380, 102641040, 1061485540020, 10828383381504000, 110460443163585124500, 1126821545314741657506960, 11494738271107875587450812020, 117257862028144889902835073024000, 1196147475406167627201191550919735380, 12201900400525345137747296220536643546000]$ |
$32$ |
$32$ |
$8$ |
$4$ |
$1$ |
\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-65}) \) |
$C_2$, $C_2$ |
1.101.au $\times$ 1.101.am |
| 2.101.abg_rb |
$2$ |
$\F_{101}$ |
$101$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 32 x + 443 x^{2} - 3232 x^{3} + 10201 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$70$ |
$[70, 10064, 1030366, 104060964, 10509970550, 1061517357758, 107213504571950, 10828566887332804, 1093685273150160646, 110462212560335361104]$ |
$7381$ |
$[7381, 102662329, 1061584695556, 10828625453910649, 110460846750591231301, 1126822065475845111696400, 11494738847487730262990652541, 117257862662905155385068984111849, 1196147476196103182587153069708263076, 12201900401602189728664929078116620214809]$ |
$8$ |
$8$ |
$2$ |
$2$ |
$1$ |
4.0.8384400.2 |
$D_{4}$ |
simple |
| 2.101.abg_rc |
$2$ |
$\F_{101}$ |
$101$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 32 x + 444 x^{2} - 3232 x^{3} + 10201 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$70$ |
$[70, 10066, 1030462, 104063286, 10510008630, 1061517834658, 107213509580590, 10828566938046366, 1093685273732683942, 110462212567951300626]$ |
$7382$ |
$[7382, 102683620, 1061683853750, 10828867111521680, 110461246974802788262, 1126822571714127762662500, 11494739384481626465935480742, 117257863212060356410855801425920, 1196147476833200333043481067977733750, 12201900402443463259007141217974437070500]$ |
$20$ |
$20$ |
$2$ |
$2$ |
$1$ |
4.0.11352320.2 |
$D_{4}$ |
simple |
| 2.101.abg_rd |
$2$ |
$\F_{101}$ |
$101$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 32 x + 445 x^{2} - 3232 x^{3} + 10201 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$70$ |
$[70, 10068, 1030558, 104065604, 10510046390, 1061518298454, 107213514223214, 10828566980931460, 1093685274178468294, 110462212573524545268]$ |
$7383$ |
$[7383, 102704913, 1061783014608, 10829108354347737, 110461643836228188183, 1126823064042331815766272, 11494739882233660433614426527, 117257863676444466166390770130473, 1196147477320748113950581597919436752, 12201900403059096193312351544838314371473]$ |
$36$ |
$36$ |
$2$ |
$2$ |
$1$ |
4.0.2873.1 |
$D_{4}$ |
simple |
| 2.101.abg_re |
$2$ |
$\F_{101}$ |
$101$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 32 x + 446 x^{2} - 3232 x^{3} + 10201 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$70$ |
$[70, 10070, 1030654, 104067918, 10510083830, 1061518749158, 107213518501166, 10828567016065054, 1093685274490514086, 110462212577144486390]$ |
$7384$ |
$[7384, 102726208, 1061882178136, 10829349182399488, 110462037334875877144, 1126823542473199530975808, 11494740340887928438013052184, 117257864056890938081923642048512, 1196147477662028001141175511749357144, 12201900403458962898990131827561934943808]$ |
$28$ |
$28$ |
$2$ |
$2$ |
$1$ |
4.0.223488.1 |
$D_{4}$ |
simple |
| 2.101.abg_rf |
$2$ |
$\F_{101}$ |
$101$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 32 x + 447 x^{2} - 3232 x^{3} + 10201 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$70$ |
$[70, 10072, 1030750, 104070228, 10510120950, 1061519186782, 107213522415790, 10828567043524068, 1093685274671814790, 110462212578900007752]$ |
$7385$ |
$[7385, 102747505, 1061981344340, 10829589595687625, 110462427470754354625, 1126824007019473223186320, 11494740760588526786175810665, 117257864354232705832077999127625, 1196147477860313910900478142368892660, 12201900403652881672832213787302313402625]$ |
$28$ |
$28$ |
$2$ |
$2$ |
$1$ |
4.0.14529680.1 |
$D_{4}$ |
simple |
| 2.101.abg_rg |
$2$ |
$\F_{101}$ |
$101$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 32 x + 448 x^{2} - 3232 x^{3} + 10201 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$70$ |
$[70, 10074, 1030846, 104072534, 10510157750, 1061519611338, 107213525968430, 10828567063385374, 1093685274725356966, 110462212578879485754]$ |
$7386$ |
$[7386, 102768804, 1062080513226, 10829829594222864, 110462814243872173626, 1126824457693895262540900, 11494741141479551820610746666, 117257864569302183336173914619904, 1196147477918872199966382155466110106, 12201900403650614767523498349916156174884]$ |
$24$ |
$24$ |
$2$ |
$2$ |
$1$ |
4.0.14086400.1 |
$D_{4}$ |
simple |
| 2.101.abg_rh |
$2$ |
$\F_{101}$ |
$101$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 19 x + 101 x^{2} )( 1 - 13 x + 101 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$70$ |
$[70, 10076, 1030942, 104074836, 10510194230, 1061520022838, 107213529160430, 10828567075725796, 1093685274654120262, 110462212577170789676]$ |
$7387$ |
$[7387, 102790105, 1062179684800, 10830069178015945, 110463197654237940787, 1126824894509208074752000, 11494741483705099919696445547, 117257864702931264758553969938505, 1196147477840961665529643603914059200, 12201900403461868418153067096693670707625]$ |
$22$ |
$22$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-43}) \), \(\Q(\sqrt{-235}) \) |
$C_2$, $C_2$ |
1.101.at $\times$ 1.101.an |