Learn more

Refine search


Results (1-50 of 10865 matches)

Next   displayed columns for results
Label Dimension Base field L-polynomial $p$-rank Number fields Galois groups Isogeny factors
2.101.abo_xe $2$ $\F_{101}$ $( 1 - 20 x + 101 x^{2} )^{2}$ $2$ \(\Q(\sqrt{-1}) \) $C_2$
2.101.abn_wk $2$ $\F_{101}$ $( 1 - 20 x + 101 x^{2} )( 1 - 19 x + 101 x^{2} )$ $2$ \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-43}) \) $C_2$, $C_2$
2.101.abm_vq $2$ $\F_{101}$ $( 1 - 20 x + 101 x^{2} )( 1 - 18 x + 101 x^{2} )$ $2$ \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-5}) \) $C_2$, $C_2$
2.101.abm_vr $2$ $\F_{101}$ $( 1 - 19 x + 101 x^{2} )^{2}$ $2$ \(\Q(\sqrt{-43}) \) $C_2$
2.101.abl_uw $2$ $\F_{101}$ $( 1 - 20 x + 101 x^{2} )( 1 - 17 x + 101 x^{2} )$ $2$ \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-115}) \) $C_2$, $C_2$
2.101.abl_ux $2$ $\F_{101}$ $1 - 37 x + 543 x^{2} - 3737 x^{3} + 10201 x^{4}$ $2$ 4.0.48725.1 $D_{4}$
2.101.abl_uy $2$ $\F_{101}$ $( 1 - 19 x + 101 x^{2} )( 1 - 18 x + 101 x^{2} )$ $2$ \(\Q(\sqrt{-43}) \), \(\Q(\sqrt{-5}) \) $C_2$, $C_2$
2.101.abk_uc $2$ $\F_{101}$ $( 1 - 20 x + 101 x^{2} )( 1 - 16 x + 101 x^{2} )$ $2$ \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-37}) \) $C_2$, $C_2$
2.101.abk_ud $2$ $\F_{101}$ $1 - 36 x + 523 x^{2} - 3636 x^{3} + 10201 x^{4}$ $2$ 4.0.293904.5 $D_{4}$
2.101.abk_ue $2$ $\F_{101}$ $1 - 36 x + 524 x^{2} - 3636 x^{3} + 10201 x^{4}$ $2$ 4.0.223488.6 $D_{4}$
2.101.abk_uf $2$ $\F_{101}$ $( 1 - 19 x + 101 x^{2} )( 1 - 17 x + 101 x^{2} )$ $2$ \(\Q(\sqrt{-43}) \), \(\Q(\sqrt{-115}) \) $C_2$, $C_2$
2.101.abk_ug $2$ $\F_{101}$ $( 1 - 18 x + 101 x^{2} )^{2}$ $2$ \(\Q(\sqrt{-5}) \) $C_2$
2.101.abj_ti $2$ $\F_{101}$ $( 1 - 20 x + 101 x^{2} )( 1 - 15 x + 101 x^{2} )$ $2$ \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-179}) \) $C_2$, $C_2$
2.101.abj_tj $2$ $\F_{101}$ $1 - 35 x + 503 x^{2} - 3535 x^{3} + 10201 x^{4}$ $2$ 4.0.37485.1 $D_{4}$
2.101.abj_tk $2$ $\F_{101}$ $1 - 35 x + 504 x^{2} - 3535 x^{3} + 10201 x^{4}$ $2$ 4.0.63869.1 $D_{4}$
2.101.abj_tl $2$ $\F_{101}$ $1 - 35 x + 505 x^{2} - 3535 x^{3} + 10201 x^{4}$ $1$ 4.0.836381.1 $D_{4}$
2.101.abj_tm $2$ $\F_{101}$ $( 1 - 19 x + 101 x^{2} )( 1 - 16 x + 101 x^{2} )$ $2$ \(\Q(\sqrt{-43}) \), \(\Q(\sqrt{-37}) \) $C_2$, $C_2$
2.101.abj_tn $2$ $\F_{101}$ $1 - 35 x + 507 x^{2} - 3535 x^{3} + 10201 x^{4}$ $2$ 4.0.194525.1 $D_{4}$
2.101.abj_to $2$ $\F_{101}$ $( 1 - 18 x + 101 x^{2} )( 1 - 17 x + 101 x^{2} )$ $2$ \(\Q(\sqrt{-5}) \), \(\Q(\sqrt{-115}) \) $C_2$, $C_2$
2.101.abi_so $2$ $\F_{101}$ $( 1 - 20 x + 101 x^{2} )( 1 - 14 x + 101 x^{2} )$ $2$ \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-13}) \) $C_2$, $C_2$
2.101.abi_sp $2$ $\F_{101}$ $1 - 34 x + 483 x^{2} - 3434 x^{3} + 10201 x^{4}$ $2$ 4.0.140864.1 $D_{4}$
2.101.abi_sq $2$ $\F_{101}$ $1 - 34 x + 484 x^{2} - 3434 x^{3} + 10201 x^{4}$ $2$ 4.0.2800448.4 $D_{4}$
2.101.abi_sr $2$ $\F_{101}$ $1 - 34 x + 485 x^{2} - 3434 x^{3} + 10201 x^{4}$ $2$ 4.0.2848320.2 $D_{4}$
2.101.abi_ss $2$ $\F_{101}$ $1 - 34 x + 486 x^{2} - 3434 x^{3} + 10201 x^{4}$ $2$ 4.0.158000.1 $D_{4}$
2.101.abi_st $2$ $\F_{101}$ $( 1 - 19 x + 101 x^{2} )( 1 - 15 x + 101 x^{2} )$ $2$ \(\Q(\sqrt{-43}) \), \(\Q(\sqrt{-179}) \) $C_2$, $C_2$
2.101.abi_su $2$ $\F_{101}$ $1 - 34 x + 488 x^{2} - 3434 x^{3} + 10201 x^{4}$ $2$ 4.0.1306944.1 $D_{4}$
2.101.abi_sv $2$ $\F_{101}$ $1 - 34 x + 489 x^{2} - 3434 x^{3} + 10201 x^{4}$ $2$ 4.0.669248.3 $D_{4}$
2.101.abi_sw $2$ $\F_{101}$ $( 1 - 18 x + 101 x^{2} )( 1 - 16 x + 101 x^{2} )$ $2$ \(\Q(\sqrt{-5}) \), \(\Q(\sqrt{-37}) \) $C_2$, $C_2$
2.101.abi_sx $2$ $\F_{101}$ $( 1 - 17 x + 101 x^{2} )^{2}$ $2$ \(\Q(\sqrt{-115}) \) $C_2$
2.101.abh_ru $2$ $\F_{101}$ $( 1 - 20 x + 101 x^{2} )( 1 - 13 x + 101 x^{2} )$ $2$ \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-235}) \) $C_2$, $C_2$
2.101.abh_rv $2$ $\F_{101}$ $1 - 33 x + 463 x^{2} - 3333 x^{3} + 10201 x^{4}$ $2$ 4.0.56725.1 $D_{4}$
2.101.abh_rw $2$ $\F_{101}$ $1 - 33 x + 464 x^{2} - 3333 x^{3} + 10201 x^{4}$ $2$ \(\Q(\sqrt{-3}, \sqrt{41})\) $C_2^2$
2.101.abh_rx $2$ $\F_{101}$ $1 - 33 x + 465 x^{2} - 3333 x^{3} + 10201 x^{4}$ $2$ 4.0.6753277.1 $D_{4}$
2.101.abh_ry $2$ $\F_{101}$ $1 - 33 x + 466 x^{2} - 3333 x^{3} + 10201 x^{4}$ $2$ 4.0.6825852.1 $D_{4}$
2.101.abh_rz $2$ $\F_{101}$ $1 - 33 x + 467 x^{2} - 3333 x^{3} + 10201 x^{4}$ $2$ 4.0.37845.1 $D_{4}$
2.101.abh_sa $2$ $\F_{101}$ $( 1 - 19 x + 101 x^{2} )( 1 - 14 x + 101 x^{2} )$ $2$ \(\Q(\sqrt{-43}) \), \(\Q(\sqrt{-13}) \) $C_2$, $C_2$
2.101.abh_sb $2$ $\F_{101}$ $1 - 33 x + 469 x^{2} - 3333 x^{3} + 10201 x^{4}$ $2$ 4.0.4535685.2 $D_{4}$
2.101.abh_sc $2$ $\F_{101}$ $1 - 33 x + 470 x^{2} - 3333 x^{3} + 10201 x^{4}$ $2$ 4.0.3360492.1 $D_{4}$
2.101.abh_sd $2$ $\F_{101}$ $1 - 33 x + 471 x^{2} - 3333 x^{3} + 10201 x^{4}$ $2$ 4.0.2192437.1 $D_{4}$
2.101.abh_se $2$ $\F_{101}$ $( 1 - 18 x + 101 x^{2} )( 1 - 15 x + 101 x^{2} )$ $2$ \(\Q(\sqrt{-5}) \), \(\Q(\sqrt{-179}) \) $C_2$, $C_2$
2.101.abh_sf $2$ $\F_{101}$ $1 - 33 x + 473 x^{2} - 3333 x^{3} + 10201 x^{4}$ $2$ 4.0.391725.3 $D_{4}$
2.101.abh_sg $2$ $\F_{101}$ $( 1 - 17 x + 101 x^{2} )( 1 - 16 x + 101 x^{2} )$ $2$ \(\Q(\sqrt{-115}) \), \(\Q(\sqrt{-37}) \) $C_2$, $C_2$
2.101.abg_ra $2$ $\F_{101}$ $( 1 - 20 x + 101 x^{2} )( 1 - 12 x + 101 x^{2} )$ $2$ \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-65}) \) $C_2$, $C_2$
2.101.abg_rb $2$ $\F_{101}$ $1 - 32 x + 443 x^{2} - 3232 x^{3} + 10201 x^{4}$ $2$ 4.0.8384400.2 $D_{4}$
2.101.abg_rc $2$ $\F_{101}$ $1 - 32 x + 444 x^{2} - 3232 x^{3} + 10201 x^{4}$ $2$ 4.0.11352320.2 $D_{4}$
2.101.abg_rd $2$ $\F_{101}$ $1 - 32 x + 445 x^{2} - 3232 x^{3} + 10201 x^{4}$ $2$ 4.0.2873.1 $D_{4}$
2.101.abg_re $2$ $\F_{101}$ $1 - 32 x + 446 x^{2} - 3232 x^{3} + 10201 x^{4}$ $2$ 4.0.223488.1 $D_{4}$
2.101.abg_rf $2$ $\F_{101}$ $1 - 32 x + 447 x^{2} - 3232 x^{3} + 10201 x^{4}$ $2$ 4.0.14529680.1 $D_{4}$
2.101.abg_rg $2$ $\F_{101}$ $1 - 32 x + 448 x^{2} - 3232 x^{3} + 10201 x^{4}$ $2$ 4.0.14086400.1 $D_{4}$
2.101.abg_rh $2$ $\F_{101}$ $( 1 - 19 x + 101 x^{2} )( 1 - 13 x + 101 x^{2} )$ $2$ \(\Q(\sqrt{-43}) \), \(\Q(\sqrt{-235}) \) $C_2$, $C_2$
Next   displayed columns for results