| Label |
Dimension |
Base field |
Base char. |
Simple |
Geom. simple |
Primitive |
Ordinary |
Almost ordinary |
Supersingular |
Princ. polarizable |
Jacobian |
L-polynomial |
Newton slopes |
Newton elevation |
$p$-rank |
$p$-corank |
Angle rank |
Angle corank |
$\mathbb{F}_q$ points on curve |
$\mathbb{F}_{q^k}$ points on curve |
$\mathbb{F}_q$ points on variety |
$\mathbb{F}_{q^k}$ points on variety |
Jacobians |
Hyperelliptic Jacobians |
Num. twists |
Max. twist degree |
End. degree |
Number fields |
Galois groups |
Isogeny factors |
| 1.463.abr |
$1$ |
$\F_{463}$ |
$463$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 43 x + 463 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$421$ |
$[421, 213447, 99233068, 45953644971, 21276724519471, 9851127444862704, 4561072092108458809, 2111776380458651435763, 977752464190871876438404, 452699390921190720634700607]$ |
$421$ |
$[421, 213447, 99233068, 45953644971, 21276724519471, 9851127444862704, 4561072092108458809, 2111776380458651435763, 977752464190871876438404, 452699390921190720634700607]$ |
$1$ |
$0$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
| 1.463.abq |
$1$ |
$\F_{463}$ |
$463$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 42 x + 463 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$422$ |
$[422, 213532, 99237098, 45953794656, 21276729363542, 9851127588048604, 4561072096072204442, 2111776380562936526208, 977752464193503818495174, 452699390921254827433619932]$ |
$422$ |
$[422, 213532, 99237098, 45953794656, 21276729363542, 9851127588048604, 4561072096072204442, 2111776380562936526208, 977752464193503818495174, 452699390921254827433619932]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-22}) \) |
$C_2$ |
simple |
| 1.463.abp |
$1$ |
$\F_{463}$ |
$463$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 41 x + 463 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$423$ |
$[423, 213615, 99240876, 45953926875, 21276733308813, 9851127692782320, 4561072098589183131, 2111776380617780041875, 977752464194569938900228, 452699390921272363109827575]$ |
$423$ |
$[423, 213615, 99240876, 45953926875, 21276733308813, 9851127692782320, 4561072098589183131, 2111776380617780041875, 977752464194569938900228, 452699390921272363109827575]$ |
$5$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-19}) \) |
$C_2$ |
simple |
| 1.463.abo |
$1$ |
$\F_{463}$ |
$463$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 40 x + 463 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$424$ |
$[424, 213696, 99244408, 45954042624, 21276736444744, 9851127764877504, 4561072099965877528, 2111776380637089868800, 977752464194632976351464, 452699390921264095324959936]$ |
$424$ |
$[424, 213696, 99244408, 45954042624, 21276736444744, 9851127764877504, 4561072099965877528, 2111776380637089868800, 977752464194632976351464, 452699390921264095324959936]$ |
$10$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-7}) \) |
$C_2$ |
simple |
| 1.463.abn |
$1$ |
$\F_{463}$ |
$463$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 39 x + 463 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$425$ |
$[425, 213775, 99247700, 45954142875, 21276738855875, 9851127809609200, 4561072100466787925, 2111776380632160025875, 977752464194117535016700, 452699390921244363759676375]$ |
$425$ |
$[425, 213775, 99247700, 45954142875, 21276738855875, 9851127809609200, 4561072100466787925, 2111776380632160025875, 977752464194117535016700, 452699390921244363759676375]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-331}) \) |
$C_2$ |
simple |
| 1.463.abm |
$1$ |
$\F_{463}$ |
$463$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 38 x + 463 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$426$ |
$[426, 213852, 99250758, 45954228576, 21276740621946, 9851127831743004, 4561072100318177814, 2111776380612009406848, 977752464193334291871114, 452699390921222533827586332]$ |
$426$ |
$[426, 213852, 99250758, 45954228576, 21276740621946, 9851127831743004, 4561072100318177814, 2111776380612009406848, 977752464193334291871114, 452699390921222533827586332]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-102}) \) |
$C_2$ |
simple |
| 1.463.abl |
$1$ |
$\F_{463}$ |
$463$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 37 x + 463 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$427$ |
$[427, 213927, 99253588, 45954300651, 21276741818017, 9851127835563504, 4561072099711617847, 2111776380583690923123, 977752464192501169753084, 452699390921204206581162207]$ |
$427$ |
$[427, 213927, 99253588, 45954300651, 21276741818017, 9851127835563504, 4561072099711617847, 2111776380583690923123, 977752464192501169753084, 452699390921204206581162207]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-483}) \) |
$C_2$ |
simple |
| 1.463.abk |
$1$ |
$\F_{463}$ |
$463$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 36 x + 463 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$428$ |
$[428, 214000, 99256196, 45954360000, 21276742514588, 9851127824902000, 4561072098807333236, 2111776380552572640000, 977752464191761738334348, 452699390921192214751270000]$ |
$428$ |
$[428, 214000, 99256196, 45954360000, 21276742514588, 9851127824902000, 4561072098807333236, 2111776380552572640000, 977752464191761738334348, 452699390921192214751270000]$ |
$12$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-139}) \) |
$C_2$ |
simple |
| 1.463.abj |
$1$ |
$\F_{463}$ |
$463$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 35 x + 463 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$429$ |
$[429, 214071, 99258588, 45954407499, 21276742777719, 9851127803163504, 4561072097737359633, 2111776380522592458675, 977752464191201091048084, 452699390921187432287719311]$ |
$429$ |
$[429, 214071, 99258588, 45954407499, 21276742777719, 9851127803163504, 4561072097737359633, 2111776380522592458675, 977752464191201091048084, 452699390921187432287719311]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-627}) \) |
$C_2$ |
simple |
| 1.463.abi |
$1$ |
$\F_{463}$ |
$463$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 34 x + 463 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$430$ |
$[430, 214140, 99260770, 45954444000, 21276742669150, 9851127773353020, 4561072096608512530, 2111776380496487856000, 977752464190859432229070, 452699390921189422333712700]$ |
$430$ |
$[430, 214140, 99260770, 45954444000, 21276742669150, 9851127773353020, 4561072096608512530, 2111776380496487856000, 977752464190859432229070, 452699390921189422333712700]$ |
$12$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-174}) \) |
$C_2$ |
simple |
| 1.463.abh |
$1$ |
$\F_{463}$ |
$463$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 33 x + 463 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$431$ |
$[431, 214207, 99262748, 45954470331, 21276742246421, 9851127738101104, 4561072095505175219, 2111776380476002153683, 977752464190743595293524, 452699390921196946268632807]$ |
$431$ |
$[431, 214207, 99262748, 45954470331, 21276742246421, 9851127738101104, 4561072095505175219, 2111776380476002153683, 977752464190743595293524, 452699390921196946268632807]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-763}) \) |
$C_2$ |
simple |
| 1.463.abg |
$1$ |
$\F_{463}$ |
$463$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 32 x + 463 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$432$ |
$[432, 214272, 99264528, 45954487296, 21276741562992, 9851127699688704, 4561072094491910352, 2111776380462068748288, 977752464190836699722544, 452699390921208354287615232]$ |
$432$ |
$[432, 214272, 99264528, 45954487296, 21276741562992, 9851127699688704, 4561072094491910352, 2111776380462068748288, 977752464190836699722544, 452699390921208354287615232]$ |
$18$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-23}) \) |
$C_2$ |
simple |
| 1.463.abf |
$1$ |
$\F_{463}$ |
$463$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 31 x + 463 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$433$ |
$[433, 214335, 99266116, 45954495675, 21276740668363, 9851127660071280, 4561072093615900141, 2111776380454974693075, 977752464191106141912268, 452699390921221875949187175]$ |
$433$ |
$[433, 214335, 99266116, 45954495675, 21276740668363, 9851127660071280, 4561072093615900141, 2111776380454974693075, 977752464191106141912268, 452699390921221875949187175]$ |
$9$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-11}) \) |
$C_2$ |
simple |
| 1.463.abe |
$1$ |
$\F_{463}$ |
$463$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 30 x + 463 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$434$ |
$[434, 214396, 99267518, 45954496224, 21276739608194, 9851127620902204, 4561072092909220238, 2111776380454504982400, 977752464191510102615954, 452699390921235827210277436]$ |
$434$ |
$[434, 214396, 99267518, 45954496224, 21276739608194, 9851127620902204, 4561072092909220238, 2111776380454504982400, 977752464191510102615954, 452699390921235827210277436]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-238}) \) |
$C_2$ |
simple |
| 1.463.abd |
$1$ |
$\F_{463}$ |
$463$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 29 x + 463 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$435$ |
$[435, 214455, 99268740, 45954489675, 21276738424425, 9851127583555440, 4561072092390952335, 2111776380460068849075, 977752464192002741728140, 452699390921248748677493775]$ |
$435$ |
$[435, 214455, 99268740, 45954489675, 21276738424425, 9851127583555440, 4561072092390952335, 2111776380460068849075, 977752464192002741728140, 452699390921248748677493775]$ |
$12$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1011}) \) |
$C_2$ |
simple |
| 1.463.abc |
$1$ |
$\F_{463}$ |
$463$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 28 x + 463 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$436$ |
$[436, 214512, 99269788, 45954476736, 21276737155396, 9851127549147504, 4561072092069140524, 2111776380470809344768, 977752464192538239548884, 452699390921259488131090032]$ |
$436$ |
$[436, 214512, 99269788, 45954476736, 21276737155396, 9851127549147504, 4561072092069140524, 2111776380470809344768, 977752464192538239548884, 452699390921259488131090032]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-267}) \) |
$C_2$ |
simple |
| 1.463.abb |
$1$ |
$\F_{463}$ |
$463$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 27 x + 463 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$437$ |
$[437, 214567, 99270668, 45954458091, 21276735835967, 9851127518558704, 4561072091942596457, 2111776380485697433203, 977752464193073832416804, 452699390921267238819879007]$ |
$437$ |
$[437, 214567, 99270668, 45954458091, 21276735835967, 9851127518558704, 4561072091942596457, 2111776380485697433203, 977752464193073832416804, 452699390921267238819879007]$ |
$5$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1123}) \) |
$C_2$ |
simple |
| 1.463.aba |
$1$ |
$\F_{463}$ |
$463$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 26 x + 463 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$438$ |
$[438, 214620, 99271386, 45954434400, 21276734497638, 9851127492453660, 4561072092002558346, 2111776380503611785600, 977752464193571979713238, 452699390921271543577859100]$ |
$438$ |
$[438, 214620, 99271386, 45954434400, 21276734497638, 9851127492453660, 4561072092002558346, 2111776380503611785600, 977752464193571979713238, 452699390921271543577859100]$ |
$14$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-6}) \) |
$C_2$ |
simple |
| 1.463.az |
$1$ |
$\F_{463}$ |
$463$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 25 x + 463 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$439$ |
$[439, 214671, 99271948, 45954406299, 21276733168669, 9851127471301104, 4561072092234208843, 2111776380523405427475, 977752464194001788716324, 452699390921272273472884311]$ |
$439$ |
$[439, 214671, 99271948, 45954406299, 21276733168669, 9851127471301104, 4561072092234208843, 2111776380523405427475, 977752464194001788716324, 452699390921272273472884311]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1227}) \) |
$C_2$ |
simple |
| 1.463.ay |
$1$ |
$\F_{463}$ |
$463$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 24 x + 463 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$440$ |
$[440, 214720, 99272360, 45954374400, 21276731874200, 9851127455392960, 4561072092618056840, 2111776380543960345600, 977752464194339813623160, 452699390921269588460689600]$ |
$440$ |
$[440, 214720, 99272360, 45954374400, 21276731874200, 9851127455392960, 4561072092618056840, 2111776380543960345600, 977752464194339813623160, 452699390921269588460689600]$ |
$20$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-319}) \) |
$C_2$ |
simple |
| 1.463.ax |
$1$ |
$\F_{463}$ |
$463$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 23 x + 463 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$441$ |
$[441, 214767, 99272628, 45954339291, 21276730636371, 9851127444862704, 4561072093131188229, 2111776380564231123603, 977752464194570335260444, 452699390921263886380358007]$ |
$441$ |
$[441, 214767, 99272628, 45954339291, 21276730636371, 9851127444862704, 4561072093131188229, 2111776380564231123603, 977752464194570335260444, 452699390921263886380358007]$ |
$10$ |
$0$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
| 1.463.aw |
$1$ |
$\F_{463}$ |
$463$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 22 x + 463 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$442$ |
$[442, 214812, 99272758, 45954301536, 21276729474442, 9851127439703004, 4561072093748390662, 2111776380583278634368, 977752464194685218569114, 452699390921255745586253532]$ |
$442$ |
$[442, 214812, 99272758, 45954301536, 21276729474442, 9851127439703004, 4561072093748390662, 2111776380583278634368, 977752464194685218569114, 452699390921255745586253532]$ |
$18$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-38}) \) |
$C_2$ |
simple |
| 1.463.av |
$1$ |
$\F_{463}$ |
$463$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 21 x + 463 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$443$ |
$[443, 214855, 99272756, 45954261675, 21276728404913, 9851127439782640, 4561072094443157351, 2111776380600294777075, 977752464194683435876508, 452699390921245865562915775]$ |
$443$ |
$[443, 214855, 99272756, 45954261675, 21276728404913, 9851127439782640, 4561072094443157351, 2111776380600294777075, 977752464194683435876508, 452699390921245865562915775]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1411}) \) |
$C_2$ |
simple |
| 1.463.au |
$1$ |
$\F_{463}$ |
$463$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 20 x + 463 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$444$ |
$[444, 214896, 99272628, 45954220224, 21276727441644, 9851127444862704, 4561072095188574948, 2111776380614619206400, 977752464194570335260444, 452699390921235009009789936]$ |
$444$ |
$[444, 214896, 99272628, 45954220224, 21276727441644, 9851127444862704, 4561072095188574948, 2111776380614619206400, 977752464194570335260444, 452699390921235009009789936]$ |
$18$ |
$0$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
| 1.463.at |
$1$ |
$\F_{463}$ |
$463$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 19 x + 463 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$445$ |
$[445, 214935, 99272380, 45954177675, 21276726595975, 9851127454612080, 4561072095958100545, 2111776380625748961075, 977752464194356724963380, 452699390921223948108320175]$ |
$445$ |
$[445, 214935, 99272380, 45954177675, 21276726595975, 9851127454612080, 4561072095958100545, 2111776380625748961075, 977752464194356724963380, 452699390921223948108320175]$ |
$12$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1491}) \) |
$C_2$ |
simple |
| 1.463.as |
$1$ |
$\F_{463}$ |
$463$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 18 x + 463 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$446$ |
$[446, 214972, 99272018, 45954134496, 21276725876846, 9851127468622204, 4561072096726232834, 2111776380633341858688, 977752464194057836831454, 452699390921213416991236732]$ |
$446$ |
$[446, 214972, 99272018, 45954134496, 21276725876846, 9851127468622204, 4561072096726232834, 2111776380633341858688, 977752464194057836831454, 452699390921213416991236732]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-382}) \) |
$C_2$ |
simple |
| 1.463.ar |
$1$ |
$\F_{463}$ |
$463$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 17 x + 463 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$447$ |
$[447, 215007, 99271548, 45954091131, 21276725290917, 9851127486421104, 4561072097469082467, 2111776380637214483283, 977752464193692224132724, 452699390921204071819188807]$ |
$447$ |
$[447, 215007, 99271548, 45954091131, 21276725290917, 9851127486421104, 4561072097469082467, 2111776380637214483283, 977752464193692224132724, 452699390921204071819188807]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1563}) \) |
$C_2$ |
simple |
| 1.463.aq |
$1$ |
$\F_{463}$ |
$463$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 16 x + 463 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$448$ |
$[448, 215040, 99270976, 45954048000, 21276724842688, 9851127507486720, 4561072098164846656, 2111776380637335552000, 977752464193280641851328, 452699390921196459329587200]$ |
$448$ |
$[448, 215040, 99270976, 45954048000, 21276724842688, 9851127507486720, 4561072098164846656, 2111776380637335552000, 977752464193280641851328, 452699390921196459329587200]$ |
$32$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-399}) \) |
$C_2$ |
simple |
| 1.463.ap |
$1$ |
$\F_{463}$ |
$463$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 15 x + 463 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$449$ |
$[449, 215071, 99270308, 45954005499, 21276724534619, 9851127531259504, 4561072098794193053, 2111776380633815406675, 977752464192844950659564, 452699390921190994252994311]$ |
$449$ |
$[449, 215071, 99270308, 45954005499, 21276724534619, 9851127531259504, 4561072098794193053, 2111776380633815406675, 977752464192844950659564, 452699390921190994252994311]$ |
$7$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1627}) \) |
$C_2$ |
simple |
| 1.463.ao |
$1$ |
$\F_{463}$ |
$463$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 14 x + 463 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$450$ |
$[450, 215100, 99269550, 45953964000, 21276724367250, 9851127557154300, 4561072099340557950, 2111776380626892336000, 977752464192407079238050, 452699390921187945590005500]$ |
$450$ |
$[450, 215100, 99269550, 45953964000, 21276724367250, 9851127557154300, 4561072099340557950, 2111776380626892336000, 977752464192407079238050, 452699390921187945590005500]$ |
$20$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-46}) \) |
$C_2$ |
simple |
| 1.463.an |
$1$ |
$\F_{463}$ |
$463$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 13 x + 463 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$451$ |
$[451, 215127, 99268708, 45953923851, 21276724339321, 9851127584571504, 4561072099790363839, 2111776380616916393523, 977752464191988073445164, 452699390921187431402676207]$ |
$451$ |
$[451, 215127, 99268708, 45953923851, 21276724339321, 9851127584571504, 4561072099790363839, 2111776380616916393523, 977752464191988073445164, 452699390921187431402676207]$ |
$10$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-187}) \) |
$C_2$ |
simple |
| 1.463.am |
$1$ |
$\F_{463}$ |
$463$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 12 x + 463 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$452$ |
$[452, 215152, 99267788, 45953885376, 21276724447892, 9851127612907504, 4561072100133161372, 2111776380604331336448, 977752464191607255030884, 452699390921189421495534832]$ |
$452$ |
$[452, 215152, 99267788, 45953885376, 21276724447892, 9851127612907504, 4561072100133161372, 2111776380604331336448, 977752464191607255030884, 452699390921189421495534832]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-427}) \) |
$C_2$ |
simple |
| 1.463.al |
$1$ |
$\F_{463}$ |
$463$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 11 x + 463 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$453$ |
$[453, 215175, 99266796, 45953848875, 21276724688463, 9851127641564400, 4561072100361700761, 2111776380589655269875, 977752464191281507146948, 452699390921193747138453375]$ |
$453$ |
$[453, 215175, 99266796, 45953848875, 21276724688463, 9851127641564400, 4561072100361700761, 2111776380589655269875, 977752464191281507146948, 452699390921193747138453375]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1731}) \) |
$C_2$ |
simple |
| 1.463.ak |
$1$ |
$\F_{463}$ |
$463$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 10 x + 463 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$454$ |
$[454, 215196, 99265738, 45953814624, 21276725055094, 9851127669959004, 4561072100471937658, 2111776380573460540800, 977752464191024698824934, 452699390921200116813497436]$ |
$454$ |
$[454, 215196, 99265738, 45953814624, 21276725055094, 9851127669959004, 4561072100471937658, 2111776380573460540800, 977752464191024698824934, 452699390921200116813497436]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-438}) \) |
$C_2$ |
simple |
| 1.463.aj |
$1$ |
$\F_{463}$ |
$463$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 9 x + 463 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$455$ |
$[455, 215215, 99264620, 45953782875, 21276725540525, 9851127697531120, 4561072100462978555, 2111776380556353385875, 977752464190847255876420, 452699390921208136846715575]$ |
$455$ |
$[455, 215215, 99264620, 45953782875, 21276725540525, 9851127697531120, 4561072100462978555, 2111776380556353385875, 977752464190847255876420, 452699390921208136846715575]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1771}) \) |
$C_2$ |
simple |
| 1.463.ai |
$1$ |
$\F_{463}$ |
$463$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 8 x + 463 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$456$ |
$[456, 215232, 99263448, 45953753856, 21276726136296, 9851127723751104, 4561072100336970744, 2111776380538953796608, 977752464190755881314824, 452699390921217335710026432]$ |
$456$ |
$[456, 215232, 99263448, 45953753856, 21276726136296, 9851127723751104, 4561072100336970744, 2111776380538953796608, 977752464190755881314824, 452699390921217335710026432]$ |
$28$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-447}) \) |
$C_2$ |
simple |
| 1.463.ah |
$1$ |
$\F_{463}$ |
$463$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 7 x + 463 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$457$ |
$[457, 215247, 99262228, 45953727771, 21276726832867, 9851127748126704, 4561072100098941877, 2111776380521876025363, 977752464190753424406844, 452699390921227190744291607]$ |
$457$ |
$[457, 215247, 99262228, 45953727771, 21276726832867, 9851127748126704, 4561072100098941877, 2111776380521876025363, 977752464190753424406844, 452699390921227190744291607]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1803}) \) |
$C_2$ |
simple |
| 1.463.ag |
$1$ |
$\F_{463}$ |
$463$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 6 x + 463 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$458$ |
$[458, 215260, 99260966, 45953704800, 21276727619738, 9851127770209180, 4561072099756594166, 2111776380505710115200, 977752464190838893832618, 452699390921237156058694300]$ |
$458$ |
$[458, 215260, 99260966, 45953704800, 21276727619738, 9851127770209180, 4561072099756594166, 2111776380505710115200, 977752464190838893832618, 452699390921237156058694300]$ |
$14$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-454}) \) |
$C_2$ |
simple |
| 1.463.af |
$1$ |
$\F_{463}$ |
$463$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 5 x + 463 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$459$ |
$[459, 215271, 99259668, 45953685099, 21276728485569, 9851127789598704, 4561072099320058263, 2111776380491004796275, 977752464191007607167804, 452699390921246690400049311]$ |
$459$ |
$[459, 215271, 99259668, 45953685099, 21276728485569, 9851127789598704, 4561072099320058263, 2111776380491004796275, 977752464191007607167804, 452699390921246690400049311]$ |
$12$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-203}) \) |
$C_2$ |
simple |
| 1.463.ae |
$1$ |
$\F_{463}$ |
$463$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 4 x + 463 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$460$ |
$[460, 215280, 99258340, 45953668800, 21276729418300, 9851127805949040, 4561072098801611860, 2111776380478252051200, 977752464191251465997740, 452699390921255283855020400]$ |
$460$ |
$[460, 215280, 99258340, 45953668800, 21276729418300, 9851127805949040, 4561072098801611860, 2111776380478252051200, 977752464191251465997740, 452699390921255283855020400]$ |
$32$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-51}) \) |
$C_2$ |
simple |
| 1.463.ad |
$1$ |
$\F_{463}$ |
$463$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 3 x + 463 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$461$ |
$[461, 215287, 99256988, 45953656011, 21276730405271, 9851127818971504, 4561072098215368049, 2111776380467873611443, 977752464191559343433684, 452699390921262482344787407]$ |
$461$ |
$[461, 215287, 99256988, 45953656011, 21276730405271, 9851127818971504, 4561072098215368049, 2111776380467873611443, 977752464191559343433684, 452699390921262482344787407]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1843}) \) |
$C_2$ |
simple |
| 1.463.ac |
$1$ |
$\F_{463}$ |
$463$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 2 x + 463 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$462$ |
$[462, 215292, 99255618, 45953646816, 21276731433342, 9851127828438204, 4561072097576938482, 2111776380460209606528, 977752464191917568623854, 452699390921267908991859132]$ |
$462$ |
$[462, 215292, 99255618, 45953646816, 21276731433342, 9851127828438204, 4561072097576938482, 2111776380460209606528, 977752464191917568623854, 452699390921267908991859132]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-462}) \) |
$C_2$ |
simple |
| 1.463.ab |
$1$ |
$\F_{463}$ |
$463$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - x + 463 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$463$ |
$[463, 215295, 99254236, 45953641275, 21276732489013, 9851127834184560, 4561072096903076371, 2111776380455509547475, 977752464192310491037588, 452699390921271281578839975]$ |
$463$ |
$[463, 215295, 99254236, 45953641275, 21276732489013, 9851127834184560, 4561072096903076371, 2111776380455509547475, 977752464192310491037588, 452699390921271281578839975]$ |
$14$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1851}) \) |
$C_2$ |
simple |
| 1.463.a |
$1$ |
$\F_{463}$ |
$463$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 + 463 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$464$ |
$[464, 215296, 99252848, 45953639424, 21276733558544, 9851127836111104, 4561072096211304368, 2111776380453925785600, 977752464192721105849424, 452699390921272425475399936]$ |
$464$ |
$[464, 215296, 99252848, 45953639424, 21276733558544, 9851127836111104, 4561072096211304368, 2111776380453925785600, 977752464192721105849424, 452699390921272425475399936]$ |
$14$ |
$0$ |
$1$ |
$1$ |
$2$ |
\(\Q(\sqrt{-463}) \) |
$C_2$ |
simple |
| 1.463.b |
$1$ |
$\F_{463}$ |
$463$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + x + 463 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$465$ |
$[465, 215295, 99251460, 45953641275, 21276734628075, 9851127834184560, 4561072095519532365, 2111776380455509547475, 977752464193131720661260, 452699390921271281578839975]$ |
$465$ |
$[465, 215295, 99251460, 45953641275, 21276734628075, 9851127834184560, 4561072095519532365, 2111776380455509547475, 977752464193131720661260, 452699390921271281578839975]$ |
$14$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1851}) \) |
$C_2$ |
simple |
| 1.463.c |
$1$ |
$\F_{463}$ |
$463$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 2 x + 463 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$466$ |
$[466, 215292, 99250078, 45953646816, 21276735683746, 9851127828438204, 4561072094845670254, 2111776380460209606528, 977752464193524643074994, 452699390921267908991859132]$ |
$466$ |
$[466, 215292, 99250078, 45953646816, 21276735683746, 9851127828438204, 4561072094845670254, 2111776380460209606528, 977752464193524643074994, 452699390921267908991859132]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-462}) \) |
$C_2$ |
simple |
| 1.463.d |
$1$ |
$\F_{463}$ |
$463$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 3 x + 463 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$467$ |
$[467, 215287, 99248708, 45953656011, 21276736711817, 9851127818971504, 4561072094207240687, 2111776380467873611443, 977752464193882868265164, 452699390921262482344787407]$ |
$467$ |
$[467, 215287, 99248708, 45953656011, 21276736711817, 9851127818971504, 4561072094207240687, 2111776380467873611443, 977752464193882868265164, 452699390921262482344787407]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1843}) \) |
$C_2$ |
simple |
| 1.463.e |
$1$ |
$\F_{463}$ |
$463$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 4 x + 463 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$468$ |
$[468, 215280, 99247356, 45953668800, 21276737698788, 9851127805949040, 4561072093620996876, 2111776380478252051200, 977752464194190745701108, 452699390921255283855020400]$ |
$468$ |
$[468, 215280, 99247356, 45953668800, 21276737698788, 9851127805949040, 4561072093620996876, 2111776380478252051200, 977752464194190745701108, 452699390921255283855020400]$ |
$32$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-51}) \) |
$C_2$ |
simple |
| 1.463.f |
$1$ |
$\F_{463}$ |
$463$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 5 x + 463 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$469$ |
$[469, 215271, 99246028, 45953685099, 21276738631519, 9851127789598704, 4561072093102550473, 2111776380491004796275, 977752464194434604531044, 452699390921246690400049311]$ |
$469$ |
$[469, 215271, 99246028, 45953685099, 21276738631519, 9851127789598704, 4561072093102550473, 2111776380491004796275, 977752464194434604531044, 452699390921246690400049311]$ |
$12$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-203}) \) |
$C_2$ |
simple |
| 1.463.g |
$1$ |
$\F_{463}$ |
$463$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 6 x + 463 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$470$ |
$[470, 215260, 99244730, 45953704800, 21276739497350, 9851127770209180, 4561072092666014570, 2111776380505710115200, 977752464194603317866230, 452699390921237156058694300]$ |
$470$ |
$[470, 215260, 99244730, 45953704800, 21276739497350, 9851127770209180, 4561072092666014570, 2111776380505710115200, 977752464194603317866230, 452699390921237156058694300]$ |
$14$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-454}) \) |
$C_2$ |
simple |