| Label |
Dimension |
Base field |
Base char. |
Simple |
Geom. simple |
Primitive |
Ordinary |
Almost ordinary |
Supersingular |
Princ. polarizable |
Jacobian |
L-polynomial |
Newton slopes |
Newton elevation |
$p$-rank |
$p$-corank |
Angle rank |
Angle corank |
$\mathbb{F}_q$ points on curve |
$\mathbb{F}_{q^k}$ points on curve |
$\mathbb{F}_q$ points on variety |
$\mathbb{F}_{q^k}$ points on variety |
Jacobians |
Hyperelliptic Jacobians |
Num. twists |
Max. twist degree |
End. degree |
Number fields |
Galois groups |
Isogeny factors |
| 1.431.abp |
$1$ |
$\F_{431}$ |
$431$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 41 x + 431 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$391$ |
$[391, 184943, 80047084, 34506849883, 14872575858701, 6410082434927600, 2762745568032569531, 1190743340438401391763, 513210379737594468997444, 221193673666991945521579703]$ |
$391$ |
$[391, 184943, 80047084, 34506849883, 14872575858701, 6410082434927600, 2762745568032569531, 1190743340438401391763, 513210379737594468997444, 221193673666991945521579703]$ |
$1$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-43}) \) |
$C_2$ |
simple |
| 1.431.abo |
$1$ |
$\F_{431}$ |
$431$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 40 x + 431 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$392$ |
$[392, 185024, 80050712, 34506976000, 14872579638952, 6410082537193664, 2762745570586862392, 1190743340497974144000, 513210379738897008544712, 221193673667018576070567104]$ |
$392$ |
$[392, 185024, 80050712, 34506976000, 14872579638952, 6410082537193664, 2762745570586862392, 1190743340497974144000, 513210379738897008544712, 221193673667018576070567104]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-31}) \) |
$C_2$ |
simple |
| 1.431.abn |
$1$ |
$\F_{431}$ |
$431$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 39 x + 431 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$393$ |
$[393, 185103, 80054100, 34507086363, 14872582656003, 6410082608924400, 2762745572074684533, 1190743340524006678803, 513210379739231982987900, 221193673667019322335114903]$ |
$393$ |
$[393, 185103, 80054100, 34507086363, 14872582656003, 6410082608924400, 2762745572074684533, 1190743340524006678803, 513210379739231982987900, 221193673667019322335114903]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-203}) \) |
$C_2$ |
simple |
| 1.431.abm |
$1$ |
$\F_{431}$ |
$431$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 38 x + 431 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$394$ |
$[394, 185180, 80057254, 34507181920, 14872584990554, 6410082655067420, 2762745572740869494, 1190743340526869662080, 513210379738988575028074, 221193673667007406196169500]$ |
$394$ |
$[394, 185180, 80057254, 34507181920, 14872584990554, 6410082655067420, 2762745572740869494, 1190743340526869662080, 513210379738988575028074, 221193673667007406196169500]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-70}) \) |
$C_2$ |
simple |
| 1.431.abl |
$1$ |
$\F_{431}$ |
$431$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 37 x + 431 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$395$ |
$[395, 185255, 80060180, 34507263595, 14872586718625, 6410082680084720, 2762745572794509655, 1190743340514841303155, 513210379738452468249020, 221193673666991565185321375]$ |
$395$ |
$[395, 185255, 80060180, 34507263595, 14872586718625, 6410082680084720, 2762745572794509655, 1190743340514841303155, 513210379738452468249020, 221193673666991565185321375]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-355}) \) |
$C_2$ |
simple |
| 1.431.abk |
$1$ |
$\F_{431}$ |
$431$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 36 x + 431 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$396$ |
$[396, 185328, 80062884, 34507332288, 14872587911676, 6410082687980400, 2762745572412330516, 1190743340494395587328, 513210379737825231457644, 221193673666977143588412528]$ |
$396$ |
$[396, 185328, 80062884, 34507332288, 14872587911676, 6410082687980400, 2762745572412330516, 1190743340494395587328, 513210379737825231457644, 221193673666977143588412528]$ |
$12$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-107}) \) |
$C_2$ |
simple |
| 1.431.abj |
$1$ |
$\F_{431}$ |
$431$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 35 x + 431 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$397$ |
$[397, 185399, 80065372, 34507388875, 14872588636727, 6410082682327664, 2762745571741873457, 1190743340470463869875, 513210379737241123824532, 221193673666966988452326479]$ |
$397$ |
$[397, 185399, 80065372, 34507388875, 14872588636727, 6410082682327664, 2762745571741873457, 1190743340470463869875, 513210379737241123824532, 221193673666966988452326479]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-499}) \) |
$C_2$ |
simple |
| 1.431.abi |
$1$ |
$\F_{431}$ |
$431$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 34 x + 431 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$398$ |
$[398, 185468, 80067650, 34507434208, 14872588956478, 6410082666295100, 2762745570904492018, 1190743340446671343488, 513210379736781556530350, 221193673666962175911680828]$ |
$398$ |
$[398, 185468, 80067650, 34507434208, 14872588956478, 6410082666295100, 2762745570904492018, 1190743340446671343488, 513210379736781556530350, 221193673666962175911680828]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-142}) \) |
$C_2$ |
simple |
| 1.431.abh |
$1$ |
$\F_{431}$ |
$431$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 33 x + 431 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$399$ |
$[399, 185535, 80069724, 34507469115, 14872588929429, 6410082642672240, 2762745569998166739, 1190743340425549850835, 513210379736487433197204, 221193673666962590940798375]$ |
$399$ |
$[399, 185535, 80069724, 34507469115, 14872588929429, 6410082642672240, 2762745569998166739, 1190743340425549850835, 513210379736487433197204, 221193673666962590940798375]$ |
$10$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-635}) \) |
$C_2$ |
simple |
| 1.431.abg |
$1$ |
$\F_{431}$ |
$431$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 32 x + 431 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$400$ |
$[400, 185600, 80071600, 34507494400, 14872588610000, 6410082613894400, 2762745569100143600, 1190743340408728473600, 513210379736369578320400, 221193673666967381457440000]$ |
$400$ |
$[400, 185600, 80071600, 34507494400, 14872588610000, 6410082613894400, 2762745569100143600, 1190743340408728473600, 513210379736369578320400, 221193673666967381457440000]$ |
$14$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-7}) \) |
$C_2$ |
simple |
| 1.431.abf |
$1$ |
$\F_{431}$ |
$431$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 31 x + 431 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$401$ |
$[401, 185663, 80073284, 34507510843, 14872588048651, 6410082582066800, 2762745568269401101, 1190743340397103289043, 513210379736417450215244, 221193673666975305654712103]$ |
$401$ |
$[401, 185663, 80073284, 34507510843, 14872588048651, 6410082582066800, 2762745568269401101, 1190743340397103289043, 513210379736417450215244, 221193673666975305654712103]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-763}) \) |
$C_2$ |
simple |
| 1.431.abe |
$1$ |
$\F_{431}$ |
$431$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 30 x + 431 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$402$ |
$[402, 185724, 80074782, 34507519200, 14872587292002, 6410082548987964, 2762745567548951022, 1190743340390987644800, 513210379736606322655602, 221193673666984989512684604]$ |
$402$ |
$[402, 185724, 80074782, 34507519200, 14872587292002, 6410082548987964, 2762745567548951022, 1190743340390987644800, 513210379736606322655602, 221193673666984989512684604]$ |
$20$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-206}) \) |
$C_2$ |
simple |
| 1.431.abd |
$1$ |
$\F_{431}$ |
$431$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 29 x + 431 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$403$ |
$[403, 185783, 80076100, 34507520203, 14872586382953, 6410082516172400, 2762745566967977903, 1190743340390244262323, 513210379736903107405900, 221193673666995109637943503]$ |
$403$ |
$[403, 185783, 80076100, 34507520203, 14872586382953, 6410082516172400, 2762745566967977903, 1190743340390244262323, 513210379736903107405900, 221193673666995109637943503]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-883}) \) |
$C_2$ |
simple |
| 1.431.abc |
$1$ |
$\F_{431}$ |
$431$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 28 x + 431 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$404$ |
$[404, 185840, 80077244, 34507514560, 14872585360804, 6410082484872560, 2762745566543822284, 1190743340394400439040, 513210379737270978236084, 221193673667004514893926000]$ |
$404$ |
$[404, 185840, 80077244, 34507514560, 14872585360804, 6410082484872560, 2762745566543822284, 1190743340394400439040, 513210379737270978236084, 221193673667004514893926000]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-235}) \) |
$C_2$ |
simple |
| 1.431.abb |
$1$ |
$\F_{431}$ |
$431$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 27 x + 431 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$405$ |
$[405, 185895, 80078220, 34507502955, 14872584261375, 6410082456100080, 2762745566283812745, 1190743340402747578995, 513210379737672945759780, 221193673667012298713817375]$ |
$405$ |
$[405, 185895, 80078220, 34507502955, 14872584261375, 6410082456100080, 2762745566283812745, 1190743340402747578995, 513210379737672945759780, 221193673667012298713817375]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-995}) \) |
$C_2$ |
simple |
| 1.431.aba |
$1$ |
$\F_{431}$ |
$431$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 26 x + 431 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$406$ |
$[406, 185948, 80079034, 34507486048, 14872583117126, 6410082430646300, 2762745566186951786, 1190743340414426241408, 513210379738074521549494, 221193673667017832527398428]$ |
$406$ |
$[406, 185948, 80079034, 34507486048, 14872583117126, 6410082430646300, 2762745566186951786, 1190743340414426241408, 513210379738074521549494, 221193673667017832527398428]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-262}) \) |
$C_2$ |
simple |
| 1.431.az |
$1$ |
$\F_{431}$ |
$431$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 25 x + 431 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$407$ |
$[407, 185999, 80079692, 34507464475, 14872581957277, 6410082409102064, 2762745566245460587, 1190743340428497856275, 513210379738445599459172, 221193673667020769379891479]$ |
$407$ |
$[407, 185999, 80079692, 34507464475, 14872581957277, 6410082409102064, 2762745566245460587, 1190743340428497856275, 513210379738445599459172, 221193673667020769379891479]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1099}) \) |
$C_2$ |
simple |
| 1.431.ay |
$1$ |
$\F_{431}$ |
$431$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 24 x + 431 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$408$ |
$[408, 186048, 80080200, 34507438848, 14872580807928, 6410082391876800, 2762745566446187688, 1190743340444004215808, 513210379738761671923800, 221193673667021025570932928]$ |
$408$ |
$[408, 186048, 80080200, 34507438848, 14872580807928, 6410082391876800, 2762745566446187688, 1190743340444004215808, 513210379738761671923800, 221193673667021025570932928]$ |
$28$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-287}) \) |
$C_2$ |
simple |
| 1.431.ax |
$1$ |
$\F_{431}$ |
$431$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 23 x + 431 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$409$ |
$[409, 186095, 80080564, 34507409755, 14872579692179, 6410082379216880, 2762745566771886629, 1190743340460015810195, 513210379739004489207964, 221193673667018746991672375]$ |
$409$ |
$[409, 186095, 80080564, 34507409755, 14872579692179, 6410082379216880, 2762745566771886629, 1190743340460015810195, 513210379739004489207964, 221193673667018746991672375]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1195}) \) |
$C_2$ |
simple |
| 1.431.aw |
$1$ |
$\F_{431}$ |
$431$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 22 x + 431 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$410$ |
$[410, 186140, 80080790, 34507377760, 14872578630250, 6410082371223260, 2762745567202367590, 1190743340475670035840, 513210379739162260140410, 221193673667014265784033500]$ |
$410$ |
$[410, 186140, 80080790, 34507377760, 14872578630250, 6410082371223260, 2762745567202367590, 1190743340475670035840, 513210379739162260140410, 221193673667014265784033500]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-310}) \) |
$C_2$ |
simple |
| 1.431.av |
$1$ |
$\F_{431}$ |
$431$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 21 x + 431 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$411$ |
$[411, 186183, 80080884, 34507343403, 14872577639601, 6410082367868400, 2762745567715528071, 1190743340490200263923, 513210379739229483799644, 221193673667008051984741503]$ |
$411$ |
$[411, 186183, 80080884, 34507343403, 14872577639601, 6410082367868400, 2762745567715528071, 1190743340490200263923, 513210379739229483799644, 221193673667008051984741503]$ |
$11$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1283}) \) |
$C_2$ |
simple |
| 1.431.au |
$1$ |
$\F_{431}$ |
$431$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 20 x + 431 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$412$ |
$[412, 186224, 80080852, 34507307200, 14872576735052, 6410082369012464, 2762745568288267652, 1190743340502956716800, 513210379739206492906492, 221193673667000663944197104]$ |
$412$ |
$[412, 186224, 80080852, 34507307200, 14872576735052, 6410082369012464, 2762745568288267652, 1190743340502956716800, 513210379739206492906492, 221193673667000663944197104]$ |
$12$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-331}) \) |
$C_2$ |
simple |
| 1.431.at |
$1$ |
$\F_{431}$ |
$431$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 19 x + 431 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$413$ |
$[413, 186263, 80080700, 34507269643, 14872575928903, 6410082374418800, 2762745568897291873, 1190743340513420059443, 513210379739098781333300, 221193673666992700523029103]$ |
$413$ |
$[413, 186263, 80080700, 34507269643, 14872575928903, 6410082374418800, 2762745568897291873, 1190743340513420059443, 513210379739098781333300, 221193673666992700523029103]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1363}) \) |
$C_2$ |
simple |
| 1.431.as |
$1$ |
$\F_{431}$ |
$431$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 18 x + 431 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$414$ |
$[414, 186300, 80080434, 34507231200, 14872575231054, 6410082383768700, 2762745569519810274, 1190743340521208572800, 513210379738916180156094, 221193673666984757363557500]$ |
$414$ |
$[414, 186300, 80080434, 34507231200, 14872575231054, 6410082383768700, 2762745569519810274, 1190743340521208572800, 513210379738916180156094, 221193673666984757363557500]$ |
$20$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-14}) \) |
$C_2$ |
simple |
| 1.431.ar |
$1$ |
$\F_{431}$ |
$431$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 17 x + 431 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$415$ |
$[415, 186335, 80080060, 34507192315, 14872574649125, 6410082396675440, 2762745570134133635, 1190743340526079735635, 513210379738671939055540, 221193673666977388905818375]$ |
$415$ |
$[415, 186335, 80080060, 34507192315, 14872574649125, 6410082396675440, 2762745570134133635, 1190743340526079735635, 513210379738671939055540, 221193673666977388905818375]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1435}) \) |
$C_2$ |
simple |
| 1.431.aq |
$1$ |
$\F_{431}$ |
$431$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 16 x + 431 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$416$ |
$[416, 186368, 80079584, 34507153408, 14872574188576, 6410082412697600, 2762745570720175456, 1190743340527927001088, 513210379738381762614944, 221193673666971077264611328]$ |
$416$ |
$[416, 186368, 80079584, 34507153408, 14872574188576, 6410082412697600, 2762745570720175456, 1190743340527927001088, 513210379738381762614944, 221193673666971077264611328]$ |
$18$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-367}) \) |
$C_2$ |
simple |
| 1.431.ap |
$1$ |
$\F_{431}$ |
$431$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 15 x + 431 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$417$ |
$[417, 186399, 80079012, 34507114875, 14872573852827, 6410082431351664, 2762745571259862717, 1190743340526772513875, 513210379738062844168812, 221193673666966208601601479]$ |
$417$ |
$[417, 186399, 80079012, 34507114875, 14872573852827, 6410082431351664, 2762745571259862717, 1190743340526772513875, 513210379738062844168812, 221193673666966208601601479]$ |
$13$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1499}) \) |
$C_2$ |
simple |
| 1.431.ao |
$1$ |
$\F_{431}$ |
$431$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 14 x + 431 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$418$ |
$[418, 186428, 80078350, 34507077088, 14872573643378, 6410082452123900, 2762745571737460958, 1190743340522756473728, 513210379737732933323650, 221193673666963057211212028]$ |
$418$ |
$[418, 186428, 80078350, 34507077088, 14872573643378, 6410082452123900, 2762745571737460958, 1190743340522756473728, 513210379737732933323650, 221193673666963057211212028]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-382}) \) |
$C_2$ |
simple |
| 1.431.an |
$1$ |
$\F_{431}$ |
$431$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 13 x + 431 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$419$ |
$[419, 186455, 80077604, 34507040395, 14872573559929, 6410082474481520, 2762745572139818719, 1190743340516123810355, 513210379737409467103724, 221193673666961777187251375]$ |
$419$ |
$[419, 186455, 80077604, 34507040395, 14872573559929, 6410082474481520, 2762745572139818719, 1190743340516123810355, 513210379737409467103724, 221193673666961777187251375]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1555}) \) |
$C_2$ |
simple |
| 1.431.am |
$1$ |
$\F_{431}$ |
$431$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 12 x + 431 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$420$ |
$[420, 186480, 80076780, 34507005120, 14872573600500, 6410082497883120, 2762745572456536380, 1190743340507208794880, 513210379737108788868420, 221193673666962401245302000]$ |
$420$ |
$[420, 186480, 80076780, 34507005120, 14872573600500, 6410082497883120, 2762745572456536380, 1190743340507208794880, 513210379737108788868420, 221193673666962401245302000]$ |
$32$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-395}) \) |
$C_2$ |
simple |
| 1.431.al |
$1$ |
$\F_{431}$ |
$431$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 11 x + 431 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$421$ |
$[421, 186503, 80075884, 34506971563, 14872573761551, 6410082521788400, 2762745572680064441, 1190743340496418172403, 513210379736845473704644, 221193673666964846040227903]$ |
$421$ |
$[421, 186503, 80075884, 34506971563, 14872573761551, 6410082521788400, 2762745572680064441, 1190743340496418172403, 513210379736845473704644, 221193673666964846040227903]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1603}) \) |
$C_2$ |
simple |
| 1.431.ak |
$1$ |
$\F_{431}$ |
$431$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 10 x + 431 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$422$ |
$[422, 186524, 80074922, 34506940000, 14872574038102, 6410082545667164, 2762745572805736282, 1190743340484213360000, 513210379736631773917382, 221193673666968923135104604]$ |
$422$ |
$[422, 186524, 80074922, 34506940000, 14872574038102, 6410082545667164, 2762745572805736282, 1190743340484213360000, 513210379736631773917382, 221193673666968923135104604]$ |
$16$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-406}) \) |
$C_2$ |
simple |
| 1.431.aj |
$1$ |
$\F_{431}$ |
$431$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 9 x + 431 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$423$ |
$[423, 186543, 80073900, 34506910683, 14872574423853, 6410082569007600, 2762745572831740443, 1190743340471092214163, 513210379736477193524100, 221193673666974354643811703]$ |
$423$ |
$[423, 186543, 80073900, 34506910683, 14872574423853, 6410082569007600, 2762745572831740443, 1190743340471092214163, 513210379736477193524100, 221193673666974354643811703]$ |
$10$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1643}) \) |
$C_2$ |
simple |
| 1.431.ai |
$1$ |
$\F_{431}$ |
$431$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 8 x + 431 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$424$ |
$[424, 186560, 80072824, 34506883840, 14872574911304, 6410082591323840, 2762745572759037464, 1190743340457570831360, 513210379736388196304104, 221193673666980792480824000]$ |
$424$ |
$[424, 186560, 80072824, 34506883840, 14872574911304, 6410082591323840, 2762745572759037464, 1190743340457570831360, 513210379736388196304104, 221193673666980792480824000]$ |
$20$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-415}) \) |
$C_2$ |
simple |
| 1.431.ah |
$1$ |
$\F_{431}$ |
$431$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 7 x + 431 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$425$ |
$[425, 186575, 80071700, 34506859675, 14872575491875, 6410082612162800, 2762745572591226325, 1190743340444165805075, 513210379736368047962300, 221193673666987840104764375]$ |
$425$ |
$[425, 186575, 80071700, 34506859675, 14872575491875, 6410082612162800, 2762745572591226325, 1190743340444165805075, 513210379736368047962300, 221193673666987840104764375]$ |
$7$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-67}) \) |
$C_2$ |
simple |
| 1.431.ag |
$1$ |
$\F_{431}$ |
$431$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 6 x + 431 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$426$ |
$[426, 186588, 80070534, 34506838368, 14872576156026, 6410082631110300, 2762745572334365526, 1190743340431377322368, 513210379736416789337994, 221193673666995075633411228]$ |
$426$ |
$[426, 186588, 80070534, 34506838368, 14872576156026, 6410082631110300, 2762745572334365526, 1190743340431377322368, 513210379736416789337994, 221193673666995075633411228]$ |
$10$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-422}) \) |
$C_2$ |
simple |
| 1.431.af |
$1$ |
$\F_{431}$ |
$431$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 5 x + 431 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$427$ |
$[427, 186599, 80069332, 34506820075, 14872576893377, 6410082647796464, 2762745571996753847, 1190743340419673442675, 513210379736531334323452, 221193673667002075233456479]$ |
$427$ |
$[427, 186599, 80069332, 34506820075, 14872576893377, 6410082647796464, 2762745571996753847, 1190743340419673442675, 513210379736531334323452, 221193673667002075233456479]$ |
$11$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1699}) \) |
$C_2$ |
simple |
| 1.431.ae |
$1$ |
$\F_{431}$ |
$431$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 4 x + 431 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$428$ |
$[428, 186608, 80068100, 34506804928, 14872577692828, 6410082661900400, 2762745571588675828, 1190743340409475861248, 513210379736705683253900, 221193673667008435744758128]$ |
$428$ |
$[428, 186608, 80068100, 34506804928, 14872577692828, 6410082661900400, 2762745571588675828, 1190743340409475861248, 513210379736705683253900, 221193673667008435744758128]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-427}) \) |
$C_2$ |
simple |
| 1.431.ad |
$1$ |
$\F_{431}$ |
$431$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 3 x + 431 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$429$ |
$[429, 186615, 80066844, 34506793035, 14872578542679, 6410082673154160, 2762745571122117009, 1190743340401147419315, 513210379736931239990484, 221193673667013795582495375]$ |
$429$ |
$[429, 186615, 80066844, 34506793035, 14872578542679, 6410082673154160, 2762745571122117009, 1190743340401147419315, 513210379736931239990484, 221193673667013795582495375]$ |
$16$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-35}) \) |
$C_2$ |
simple |
| 1.431.ac |
$1$ |
$\F_{431}$ |
$431$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 2 x + 431 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$430$ |
$[430, 186620, 80065570, 34506784480, 14872579430750, 6410082681345980, 2762745570610453970, 1190743340394981582720, 513210379737197218740430, 221193673667017853067885500]$ |
$430$ |
$[430, 186620, 80065570, 34506784480, 14872579430750, 6410082681345980, 2762745570610453970, 1190743340394981582720, 513210379737197218740430, 221193673667017853067885500]$ |
$12$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-430}) \) |
$C_2$ |
simple |
| 1.431.ab |
$1$ |
$\F_{431}$ |
$431$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - x + 431 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$431$ |
$[431, 186623, 80064284, 34506779323, 14872580344501, 6410082686322800, 2762745570068124211, 1190743340391194070483, 513210379737491124844244, 221193673667020381465331303]$ |
$431$ |
$[431, 186623, 80064284, 34506779323, 14872580344501, 6410082686322800, 2762745570068124211, 1190743340391194070483, 513210379737491124844244, 221193673667020381465331303]$ |
$5$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1723}) \) |
$C_2$ |
simple |
| 1.431.a |
$1$ |
$\F_{431}$ |
$431$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 + 431 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$432$ |
$[432, 186624, 80062992, 34506777600, 14872581271152, 6410082687992064, 2762745569510280912, 1190743340389916774400, 513210379737799292308272, 221193673667021240147407104]$ |
$432$ |
$[432, 186624, 80062992, 34506777600, 14872581271152, 6410082687992064, 2762745569510280912, 1190743340389916774400, 513210379737799292308272, 221193673667021240147407104]$ |
$42$ |
$0$ |
$1$ |
$1$ |
$2$ |
\(\Q(\sqrt{-431}) \) |
$C_2$ |
simple |
| 1.431.b |
$1$ |
$\F_{431}$ |
$431$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + x + 431 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$433$ |
$[433, 186623, 80061700, 34506779323, 14872582197803, 6410082686322800, 2762745568952437613, 1190743340391194070483, 513210379738107459772300, 221193673667020381465331303]$ |
$433$ |
$[433, 186623, 80061700, 34506779323, 14872582197803, 6410082686322800, 2762745568952437613, 1190743340391194070483, 513210379738107459772300, 221193673667020381465331303]$ |
$5$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1723}) \) |
$C_2$ |
simple |
| 1.431.c |
$1$ |
$\F_{431}$ |
$431$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 2 x + 431 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$434$ |
$[434, 186620, 80060414, 34506784480, 14872583111554, 6410082681345980, 2762745568410107854, 1190743340394981582720, 513210379738401365876114, 221193673667017853067885500]$ |
$434$ |
$[434, 186620, 80060414, 34506784480, 14872583111554, 6410082681345980, 2762745568410107854, 1190743340394981582720, 513210379738401365876114, 221193673667017853067885500]$ |
$12$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-430}) \) |
$C_2$ |
simple |
| 1.431.d |
$1$ |
$\F_{431}$ |
$431$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 3 x + 431 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$435$ |
$[435, 186615, 80059140, 34506793035, 14872583999625, 6410082673154160, 2762745567898444815, 1190743340401147419315, 513210379738667344626060, 221193673667013795582495375]$ |
$435$ |
$[435, 186615, 80059140, 34506793035, 14872583999625, 6410082673154160, 2762745567898444815, 1190743340401147419315, 513210379738667344626060, 221193673667013795582495375]$ |
$16$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-35}) \) |
$C_2$ |
simple |
| 1.431.e |
$1$ |
$\F_{431}$ |
$431$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 4 x + 431 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$436$ |
$[436, 186608, 80057884, 34506804928, 14872584849476, 6410082661900400, 2762745567431885996, 1190743340409475861248, 513210379738892901362644, 221193673667008435744758128]$ |
$436$ |
$[436, 186608, 80057884, 34506804928, 14872584849476, 6410082661900400, 2762745567431885996, 1190743340409475861248, 513210379738892901362644, 221193673667008435744758128]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-427}) \) |
$C_2$ |
simple |
| 1.431.f |
$1$ |
$\F_{431}$ |
$431$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 5 x + 431 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$437$ |
$[437, 186599, 80056652, 34506820075, 14872585648927, 6410082647796464, 2762745567023807977, 1190743340419673442675, 513210379739067250293092, 221193673667002075233456479]$ |
$437$ |
$[437, 186599, 80056652, 34506820075, 14872585648927, 6410082647796464, 2762745567023807977, 1190743340419673442675, 513210379739067250293092, 221193673667002075233456479]$ |
$11$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1699}) \) |
$C_2$ |
simple |
| 1.431.g |
$1$ |
$\F_{431}$ |
$431$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 6 x + 431 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$438$ |
$[438, 186588, 80055450, 34506838368, 14872586386278, 6410082631110300, 2762745566686196298, 1190743340431377322368, 513210379739181795278550, 221193673666995075633411228]$ |
$438$ |
$[438, 186588, 80055450, 34506838368, 14872586386278, 6410082631110300, 2762745566686196298, 1190743340431377322368, 513210379739181795278550, 221193673666995075633411228]$ |
$10$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-422}) \) |
$C_2$ |
simple |
| 1.431.h |
$1$ |
$\F_{431}$ |
$431$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 7 x + 431 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$439$ |
$[439, 186575, 80054284, 34506859675, 14872587050429, 6410082612162800, 2762745566429335499, 1190743340444165805075, 513210379739230536654244, 221193673666987840104764375]$ |
$439$ |
$[439, 186575, 80054284, 34506859675, 14872587050429, 6410082612162800, 2762745566429335499, 1190743340444165805075, 513210379739230536654244, 221193673666987840104764375]$ |
$7$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-67}) \) |
$C_2$ |
simple |
| 1.431.i |
$1$ |
$\F_{431}$ |
$431$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 8 x + 431 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$440$ |
$[440, 186560, 80053160, 34506883840, 14872587631000, 6410082591323840, 2762745566261524360, 1190743340457570831360, 513210379739210388312440, 221193673666980792480824000]$ |
$440$ |
$[440, 186560, 80053160, 34506883840, 14872587631000, 6410082591323840, 2762745566261524360, 1190743340457570831360, 513210379739210388312440, 221193673666980792480824000]$ |
$20$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-415}) \) |
$C_2$ |
simple |