| Label |
Dimension |
Base field |
Base char. |
Simple |
Geom. simple |
Primitive |
Ordinary |
Almost ordinary |
Supersingular |
Princ. polarizable |
Jacobian |
L-polynomial |
Newton slopes |
Newton elevation |
$p$-rank |
$p$-corank |
Angle rank |
Angle corank |
$\mathbb{F}_q$ points on curve |
$\mathbb{F}_{q^k}$ points on curve |
$\mathbb{F}_q$ points on variety |
$\mathbb{F}_{q^k}$ points on variety |
Jacobians |
Hyperelliptic Jacobians |
Num. twists |
Max. twist degree |
End. degree |
Number fields |
Galois groups |
Isogeny factors |
| 1.397.abn |
$1$ |
$\F_{397}$ |
$397$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 39 x + 397 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$359$ |
$[359, 156883, 62557904, 24840383571, 9861713752019, 3915101593322176, 1554295348320506591, 617055253408526539203, 244970935601809841122448, 97253461433815136010002443]$ |
$359$ |
$[359, 156883, 62557904, 24840383571, 9861713752019, 3915101593322176, 1554295348320506591, 617055253408526539203, 244970935601809841122448, 97253461433815136010002443]$ |
$1$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-67}) \) |
$C_2$ |
simple |
| 1.397.abm |
$1$ |
$\F_{397}$ |
$397$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 38 x + 397 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$360$ |
$[360, 156960, 62561160, 24840489600, 9861716701800, 3915101666530080, 1554295349971839240, 617055253442518694400, 244970935602441784347240, 97253461433825370856288800]$ |
$360$ |
$[360, 156960, 62561160, 24840489600, 9861716701800, 3915101666530080, 1554295349971839240, 617055253442518694400, 244970935602441784347240, 97253461433825370856288800]$ |
$8$ |
$0$ |
$4$ |
$4$ |
$1$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
simple |
| 1.397.abl |
$1$ |
$\F_{397}$ |
$397$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 37 x + 397 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$361$ |
$[361, 157035, 62564188, 24840581475, 9861719006341, 3915101715583680, 1554295350839207113, 617055253453790746275, 244970935602476333454796, 97253461433821258114806675]$ |
$361$ |
$[361, 157035, 62564188, 24840581475, 9861719006341, 3915101715583680, 1554295350839207113, 617055253453790746275, 244970935602476333454796, 97253461433821258114806675]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-219}) \) |
$C_2$ |
simple |
| 1.397.abk |
$1$ |
$\F_{397}$ |
$397$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 36 x + 397 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$362$ |
$[362, 157108, 62566994, 24840660096, 9861720738122, 3915101744670676, 1554295351117055762, 617055253450032112128, 244970935602181272893738, 97253461433811177509390068]$ |
$362$ |
$[362, 157108, 62566994, 24840660096, 9861720738122, 3915101744670676, 1554295351117055762, 617055253450032112128, 244970935602181272893738, 97253461433811177509390068]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-73}) \) |
$C_2$ |
simple |
| 1.397.abj |
$1$ |
$\F_{397}$ |
$397$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 35 x + 397 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$363$ |
$[363, 157179, 62569584, 24840726339, 9861721965183, 3915101757542976, 1554295350969589899, 617055253437269007075, 244970935601747422980528, 97253461433800404172719939]$ |
$363$ |
$[363, 157179, 62569584, 24840726339, 9861721965183, 3915101757542976, 1554295350969589899, 617055253437269007075, 244970935601747422980528, 97253461433800404172719939]$ |
$5$ |
$0$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
| 1.397.abi |
$1$ |
$\F_{397}$ |
$397$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 34 x + 397 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$364$ |
$[364, 157248, 62571964, 24840781056, 9861722751244, 3915101757542976, 1554295350533798236, 617055253420108059648, 244970935601304037979308, 97253461433791920286306368]$ |
$364$ |
$[364, 157248, 62571964, 24840781056, 9861722751244, 3915101757542976, 1554295350533798236, 617055253420108059648, 244970935601304037979308, 97253461433791920286306368]$ |
$14$ |
$0$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
| 1.397.abh |
$1$ |
$\F_{397}$ |
$397$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 33 x + 397 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$365$ |
$[365, 157315, 62574140, 24840825075, 9861723155825, 3915101747629120, 1554295349922296885, 617055253401956076675, 244970935600932027446060, 97253461433787071968450075]$ |
$365$ |
$[365, 157315, 62574140, 24840825075, 9861723155825, 3915101747629120, 1554295349922296885, 617055253401956076675, 244970935600932027446060, 97253461433787071968450075]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-499}) \) |
$C_2$ |
simple |
| 1.397.abg |
$1$ |
$\F_{397}$ |
$397$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 32 x + 397 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$366$ |
$[366, 157380, 62576118, 24840859200, 9861723234366, 3915101730400740, 1554295349225996358, 617055253385217388800, 244970935600675211594766, 97253461433786092823328900]$ |
$366$ |
$[366, 157380, 62576118, 24840859200, 9861723234366, 3915101730400740, 1554295349225996358, 617055253385217388800, 244970935600675211594766, 97253461433786092823328900]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-141}) \) |
$C_2$ |
simple |
| 1.397.abf |
$1$ |
$\F_{397}$ |
$397$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 31 x + 397 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$367$ |
$[367, 157443, 62577904, 24840884211, 9861723038347, 3915101708122176, 1554295348516597207, 617055253371470167683, 244970935600549808742448, 97253461433788513500575643]$ |
$367$ |
$[367, 157443, 62577904, 24840884211, 9861723038347, 3915101708122176, 1554295348516597207, 617055253371470167683, 244970935600549808742448, 97253461433788513500575643]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-627}) \) |
$C_2$ |
simple |
| 1.397.abe |
$1$ |
$\F_{397}$ |
$397$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 30 x + 397 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$368$ |
$[368, 157504, 62579504, 24840900864, 9861722615408, 3915101682746176, 1554295347848919344, 617055253361623065600, 244970935600552340552048, 97253461433793474676128064]$ |
$368$ |
$[368, 157504, 62579504, 24840900864, 9861722615408, 3915101682746176, 1554295347848919344, 617055253361623065600, 244970935600552340552048, 97253461433793474676128064]$ |
$10$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-43}) \) |
$C_2$ |
simple |
| 1.397.abd |
$1$ |
$\F_{397}$ |
$397$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 29 x + 397 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$369$ |
$[369, 157563, 62580924, 24840909891, 9861722009469, 3915101655936576, 1554295347263070081, 617055253356053487843, 244970935600666128817068, 97253461433799959048111043]$ |
$369$ |
$[369, 157563, 62580924, 24840909891, 9861722009469, 3915101655936576, 1554295347263070081, 617055253356053487843, 244970935600666128817068, 97253461433799959048111043]$ |
$9$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-83}) \) |
$C_2$ |
simple |
| 1.397.abc |
$1$ |
$\F_{397}$ |
$397$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 28 x + 397 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$370$ |
$[370, 157620, 62582170, 24840912000, 9861721260850, 3915101629090260, 1554295346786455930, 617055253354728768000, 244970935600866545919730, 97253461433806956242426100]$ |
$370$ |
$[370, 157620, 62582170, 24840912000, 9861721260850, 3915101629090260, 1554295346786455930, 617055253354728768000, 244970935600866545919730, 97253461433806956242426100]$ |
$12$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-201}) \) |
$C_2$ |
simple |
| 1.397.abb |
$1$ |
$\F_{397}$ |
$397$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 27 x + 397 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$371$ |
$[371, 157675, 62583248, 24840907875, 9861720406391, 3915101603358400, 1554295346435643203, 617055253357311475875, 244970935601125169845136, 97253461433813572937945875]$ |
$371$ |
$[371, 157675, 62583248, 24840907875, 9861720406391, 3915101603358400, 1554295346435643203, 617055253357311475875, 244970935601125169845136, 97253461433813572937945875]$ |
$7$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-859}) \) |
$C_2$ |
simple |
| 1.397.aba |
$1$ |
$\F_{397}$ |
$397$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 26 x + 397 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$372$ |
$[372, 157728, 62584164, 24840898176, 9861719479572, 3915101579666976, 1554295346218072452, 617055253363250047488, 244970935601412983747508, 97253461433819099047111968]$ |
$372$ |
$[372, 157728, 62584164, 24840898176, 9861719479572, 3915101579666976, 1554295346218072452, 617055253363250047488, 244970935601412983747508, 97253461433819099047111968]$ |
$12$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-57}) \) |
$C_2$ |
simple |
| 1.397.az |
$1$ |
$\F_{397}$ |
$397$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 25 x + 397 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$373$ |
$[373, 157779, 62584924, 24840883539, 9861718510633, 3915101558736576, 1554295346133631789, 617055253371855886275, 244970935601702749541068, 97253461433823039420684939]$ |
$373$ |
$[373, 157779, 62584924, 24840883539, 9861718510633, 3915101558736576, 1554295346133631789, 617055253371855886275, 244970935601702749541068, 97253461433823039420684939]$ |
$9$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-107}) \) |
$C_2$ |
simple |
| 1.397.ay |
$1$ |
$\F_{397}$ |
$397$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 24 x + 397 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$374$ |
$[374, 157828, 62585534, 24840864576, 9861717526694, 3915101541101476, 1554295346176094126, 617055253382368044288, 244970935601970674827478, 97253461433825119281766468]$ |
$374$ |
$[374, 157828, 62585534, 24840864576, 9861717526694, 3915101541101476, 1554295346176094126, 617055253382368044288, 244970935601970674827478, 97253461433825119281766468]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-253}) \) |
$C_2$ |
simple |
| 1.397.ax |
$1$ |
$\F_{397}$ |
$397$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 23 x + 397 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$375$ |
$[375, 157875, 62586000, 24840841875, 9861716551875, 3915101527128000, 1554295346334423375, 617055253394006551875, 244970935602197482674000, 97253461433825270430376875]$ |
$375$ |
$[375, 157875, 62586000, 24840841875, 9861716551875, 3915101527128000, 1554295346334423375, 617055253394006551875, 244970935602197482674000, 97253461433825270430376875]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1059}) \) |
$C_2$ |
simple |
| 1.397.aw |
$1$ |
$\F_{397}$ |
$397$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 22 x + 397 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$376$ |
$[376, 157920, 62586328, 24840816000, 9861715607416, 3915101517032160, 1554295346593954648, 617055253406015424000, 244970935602368984321656, 97253461433823604192197600]$ |
$376$ |
$[376, 157920, 62586328, 24840816000, 9861715607416, 3915101517032160, 1554295346593954648, 617055253406015424000, 244970935602368984321656, 97253461433823604192197600]$ |
$24$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-69}) \) |
$C_2$ |
simple |
| 1.397.av |
$1$ |
$\F_{397}$ |
$397$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 21 x + 397 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$377$ |
$[377, 157963, 62586524, 24840787491, 9861714711797, 3915101510896576, 1554295346937453497, 617055253417696331043, 244970935602476245830668, 97253461433820376109949043]$ |
$377$ |
$[377, 157963, 62586524, 24840787491, 9861714711797, 3915101510896576, 1554295346937453497, 617055253417696331043, 244970935602476245830668, 97253461433820376109949043]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1147}) \) |
$C_2$ |
simple |
| 1.397.au |
$1$ |
$\F_{397}$ |
$397$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 20 x + 397 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$378$ |
$[378, 158004, 62586594, 24840756864, 9861713880858, 3915101508686676, 1554295347346059234, 617055253428433881600, 244970935602515430961338, 97253461433815946489640564]$ |
$378$ |
$[378, 158004, 62586594, 24840756864, 9861713880858, 3915101508686676, 1554295347346059234, 617055253428433881600, 244970935602515430961338, 97253461433815946489640564]$ |
$16$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-33}) \) |
$C_2$ |
simple |
| 1.397.at |
$1$ |
$\F_{397}$ |
$397$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 19 x + 397 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$379$ |
$[379, 158043, 62586544, 24840724611, 9861713127919, 3915101510266176, 1554295347800117371, 617055253437713424483, 244970935602487394242288, 97253461433810740112972643]$ |
$379$ |
$[379, 158043, 62586544, 24840724611, 9861713127919, 3915101510266176, 1554295347800117371, 617055253437713424483, 244970935602487394242288, 97253461433810740112972643]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1227}) \) |
$C_2$ |
simple |
| 1.397.as |
$1$ |
$\F_{397}$ |
$397$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 18 x + 397 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$380$ |
$[380, 158080, 62586380, 24840691200, 9861712463900, 3915101515411840, 1554295348279906220, 617055253445132236800, 244970935602397090194620, 97253461433805207707862400]$ |
$380$ |
$[380, 158080, 62586380, 24840691200, 9861712463900, 3915101515411840, 1554295348279906220, 617055253445132236800, 244970935602397090194620, 97253461433805207707862400]$ |
$20$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-79}) \) |
$C_2$ |
simple |
| 1.397.ar |
$1$ |
$\F_{397}$ |
$397$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 17 x + 397 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$381$ |
$[381, 158115, 62586108, 24840657075, 9861711897441, 3915101523827520, 1554295348766262693, 617055253450404924675, 244970935602252857060076, 97253461433799791127774075]$ |
$381$ |
$[381, 158115, 62586108, 24840657075, 9861711897441, 3915101523827520, 1554295348766262693, 617055253450404924675, 244970935602252857060076, 97253461433799791127774075]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1299}) \) |
$C_2$ |
simple |
| 1.397.aq |
$1$ |
$\F_{397}$ |
$397$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 16 x + 397 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$382$ |
$[382, 158148, 62585734, 24840622656, 9861711435022, 3915101535157476, 1554295349241112342, 617055253453363822848, 244970935602065626123678, 97253461433794893623636868]$ |
$382$ |
$[382, 158148, 62585734, 24840622656, 9861711435022, 3915101535157476, 1554295349241112342, 617055253453363822848, 244970935602065626123678, 97253461433794893623636868]$ |
$10$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-37}) \) |
$C_2$ |
simple |
| 1.397.ap |
$1$ |
$\F_{397}$ |
$397$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 15 x + 397 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$383$ |
$[383, 158179, 62585264, 24840588339, 9861711081083, 3915101548998976, 1554295349687908679, 617055253453955139075, 244970935601848100826608, 97253461433790856095994939]$ |
$383$ |
$[383, 158179, 62585264, 24840588339, 9861711081083, 3915101548998976, 1554295349687908679, 617055253453955139075, 244970935601848100826608, 97253461433790856095994939]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1363}) \) |
$C_2$ |
simple |
| 1.397.ao |
$1$ |
$\F_{397}$ |
$397$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 14 x + 397 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$384$ |
$[384, 158208, 62584704, 24840554496, 9861710838144, 3915101564914176, 1554295350091986816, 617055253452231548928, 244970935601613943333248, 97253461433787939786029568]$ |
$384$ |
$[384, 158208, 62584704, 24840554496, 9861710838144, 3915101564914176, 1554295350091986816, 617055253452231548928, 244970935601613943333248, 97253461433787939786029568]$ |
$24$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-87}) \) |
$C_2$ |
simple |
| 1.397.an |
$1$ |
$\F_{397}$ |
$397$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 13 x + 397 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$385$ |
$[385, 158235, 62584060, 24840521475, 9861710706925, 3915101582441280, 1554295350440836465, 617055253448341906275, 244970935601377000047340, 97253461433786315498592675]$ |
$385$ |
$[385, 158235, 62584060, 24840521475, 9861710706925, 3915101582441280, 1554295350440836465, 617055253448341906275, 244970935601377000047340, 97253461433786315498592675]$ |
$12$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1419}) \) |
$C_2$ |
simple |
| 1.397.am |
$1$ |
$\F_{397}$ |
$397$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 12 x + 397 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$386$ |
$[386, 158260, 62583338, 24840489600, 9861710686466, 3915101601104980, 1554295350724299338, 617055253442518694400, 244970935601150591766146, 97253461433786059144765300]$ |
$386$ |
$[386, 158260, 62583338, 24840489600, 9861710686466, 3915101601104980, 1554295350724299338, 617055253442518694400, 244970935601150591766146, 97253461433786059144765300]$ |
$11$ |
$0$ |
$4$ |
$4$ |
$1$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
simple |
| 1.397.al |
$1$ |
$\F_{397}$ |
$397$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 11 x + 397 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$387$ |
$[387, 158283, 62582544, 24840459171, 9861710774247, 3915101620426176, 1554295350934695987, 617055253435063802403, 244970935600946888718288, 97253461433787153142075443]$ |
$387$ |
$[387, 158283, 62582544, 24840459171, 9861710774247, 3915101620426176, 1554295350934695987, 617055253435063802403, 244970935600946888718288, 97253461433787153142075443]$ |
$5$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-163}) \) |
$C_2$ |
simple |
| 1.397.ak |
$1$ |
$\F_{397}$ |
$397$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 10 x + 397 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$388$ |
$[388, 158304, 62581684, 24840430464, 9861710966308, 3915101639930976, 1554295351066887124, 617055253426333171200, 244970935600776385650628, 97253461433789493013748064]$ |
$388$ |
$[388, 158304, 62581684, 24840430464, 9861710966308, 3915101639930976, 1554295351066887124, 617055253426333171200, 244970935600776385650628, 97253461433789493013748064]$ |
$12$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-93}) \) |
$C_2$ |
simple |
| 1.397.aj |
$1$ |
$\F_{397}$ |
$397$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 9 x + 397 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$389$ |
$[389, 158323, 62580764, 24840403731, 9861711257369, 3915101659158976, 1554295351118274461, 617055253416720813123, 244970935600647487412108, 97253461433792898380587243]$ |
$389$ |
$[389, 158323, 62580764, 24840403731, 9861711257369, 3915101659158976, 1554295351118274461, 617055253416720813123, 244970935600647487412108, 97253461433792898380587243]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1507}) \) |
$C_2$ |
simple |
| 1.397.ai |
$1$ |
$\F_{397}$ |
$397$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 8 x + 397 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$390$ |
$[390, 158340, 62579790, 24840379200, 9861711640950, 3915101677670820, 1554295351088746110, 617055253406642668800, 244970935600566211127910, 97253461433797127436677700]$ |
$390$ |
$[390, 158340, 62579790, 24840379200, 9861711640950, 3915101677670820, 1554295351088746110, 617055253406642668800, 244970935600566211127910, 97253461433797127436677700]$ |
$20$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-381}) \) |
$C_2$ |
simple |
| 1.397.ah |
$1$ |
$\F_{397}$ |
$397$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 7 x + 397 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$391$ |
$[391, 158355, 62578768, 24840357075, 9861712109491, 3915101695055040, 1554295350980571583, 617055253396520724675, 244970935600536007065616, 97253461433801893939411275]$ |
$391$ |
$[391, 158355, 62578768, 24840357075, 9861712109491, 3915101695055040, 1554295350980571583, 617055253396520724675, 244970935600536007065616, 97253461433801893939411275]$ |
$17$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-19}) \) |
$C_2$ |
simple |
| 1.397.ag |
$1$ |
$\F_{397}$ |
$397$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 6 x + 397 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$392$ |
$[392, 158368, 62577704, 24840337536, 9861712654472, 3915101710934176, 1554295350798251432, 617055253386767774208, 244970935600557696666248, 97253461433806885721764768]$ |
$392$ |
$[392, 158368, 62577704, 24840337536, 9861712654472, 3915101710934176, 1554295350798251432, 617055253386767774208, 244970935600557696666248, 97253461433806885721764768]$ |
$12$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-97}) \) |
$C_2$ |
simple |
| 1.397.af |
$1$ |
$\F_{397}$ |
$397$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 5 x + 397 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$393$ |
$[393, 158379, 62576604, 24840320739, 9861713266533, 3915101724970176, 1554295350548326569, 617055253377773165475, 244970935600629522947148, 97253461433811783746649939]$ |
$393$ |
$[393, 158379, 62576604, 24840320739, 9861713266533, 3915101724970176, 1554295350548326569, 617055253377773165475, 244970935600629522947148, 97253461433811783746649939]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1563}) \) |
$C_2$ |
simple |
| 1.397.ae |
$1$ |
$\F_{397}$ |
$397$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 4 x + 397 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$394$ |
$[394, 158388, 62575474, 24840306816, 9861713935594, 3915101736869076, 1554295350239152306, 617055253369889837568, 244970935600747305580618, 97253461433816280765895668]$ |
$394$ |
$[394, 158388, 62575474, 24840306816, 9861713935594, 3915101736869076, 1554295350239152306, 617055253369889837568, 244970935600747305580618, 97253461433816280765895668]$ |
$12$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-393}) \) |
$C_2$ |
simple |
| 1.397.ad |
$1$ |
$\F_{397}$ |
$397$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 3 x + 397 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$395$ |
$[395, 158395, 62574320, 24840295875, 9861714650975, 3915101746384960, 1554295349880642155, 617055253363422907875, 244970935600904690412080, 97253461433820098716377475]$ |
$395$ |
$[395, 158395, 62574320, 24840295875, 9861714650975, 3915101746384960, 1554295349880642155, 617055253363422907875, 244970935600904690412080, 97253461433820098716377475]$ |
$9$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1579}) \) |
$C_2$ |
simple |
| 1.397.ac |
$1$ |
$\F_{397}$ |
$397$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 2 x + 397 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$396$ |
$[396, 158400, 62573148, 24840288000, 9861715401516, 3915101753323200, 1554295349483986428, 617055253358620032000, 244970935601093481004236, 97253461433823004079352000]$ |
$396$ |
$[396, 158400, 62573148, 24840288000, 9861715401516, 3915101753323200, 1554295349483986428, 617055253358620032000, 244970935601093481004236, 97253461433823004079352000]$ |
$30$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-11}) \) |
$C_2$ |
simple |
| 1.397.ab |
$1$ |
$\F_{397}$ |
$397$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - x + 397 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$397$ |
$[397, 158403, 62571964, 24840283251, 9861716175697, 3915101757542976, 1554295349061350677, 617055253355663717763, 244970935601304037979308, 97253461433824820542554843]$ |
$397$ |
$[397, 158403, 62571964, 24840283251, 9861716175697, 3915101757542976, 1554295349061350677, 617055253355663717763, 244970935601304037979308, 97253461433824820542554843]$ |
$9$ |
$0$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
| 1.397.a |
$1$ |
$\F_{397}$ |
$397$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 + 397 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$398$ |
$[398, 158404, 62570774, 24840281664, 9861716961758, 3915101758959076, 1554295348625559014, 617055253354665734400, 244970935601525730479918, 97253461433825438434450564]$ |
$398$ |
$[398, 158404, 62570774, 24840281664, 9861716961758, 3915101758959076, 1554295348625559014, 617055253354665734400, 244970935601525730479918, 97253461433825438434450564]$ |
$6$ |
$0$ |
$1$ |
$1$ |
$2$ |
\(\Q(\sqrt{-397}) \) |
$C_2$ |
simple |
| 1.397.b |
$1$ |
$\F_{397}$ |
$397$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + x + 397 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$399$ |
$[399, 158403, 62569584, 24840283251, 9861717747819, 3915101757542976, 1554295348189767351, 617055253355663717763, 244970935601747422980528, 97253461433824820542554843]$ |
$399$ |
$[399, 158403, 62569584, 24840283251, 9861717747819, 3915101757542976, 1554295348189767351, 617055253355663717763, 244970935601747422980528, 97253461433824820542554843]$ |
$9$ |
$0$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
| 1.397.c |
$1$ |
$\F_{397}$ |
$397$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 2 x + 397 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$400$ |
$[400, 158400, 62568400, 24840288000, 9861718522000, 3915101753323200, 1554295347767131600, 617055253358620032000, 244970935601957979955600, 97253461433823004079352000]$ |
$400$ |
$[400, 158400, 62568400, 24840288000, 9861718522000, 3915101753323200, 1554295347767131600, 617055253358620032000, 244970935601957979955600, 97253461433823004079352000]$ |
$30$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-11}) \) |
$C_2$ |
simple |
| 1.397.d |
$1$ |
$\F_{397}$ |
$397$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 3 x + 397 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$401$ |
$[401, 158395, 62567228, 24840295875, 9861719272541, 3915101746384960, 1554295347370475873, 617055253363422907875, 244970935602146770547756, 97253461433820098716377475]$ |
$401$ |
$[401, 158395, 62567228, 24840295875, 9861719272541, 3915101746384960, 1554295347370475873, 617055253363422907875, 244970935602146770547756, 97253461433820098716377475]$ |
$9$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1579}) \) |
$C_2$ |
simple |
| 1.397.e |
$1$ |
$\F_{397}$ |
$397$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 4 x + 397 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$402$ |
$[402, 158388, 62566074, 24840306816, 9861719987922, 3915101736869076, 1554295347011965722, 617055253369889837568, 244970935602304155379218, 97253461433816280765895668]$ |
$402$ |
$[402, 158388, 62566074, 24840306816, 9861719987922, 3915101736869076, 1554295347011965722, 617055253369889837568, 244970935602304155379218, 97253461433816280765895668]$ |
$12$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-393}) \) |
$C_2$ |
simple |
| 1.397.f |
$1$ |
$\F_{397}$ |
$397$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 5 x + 397 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$403$ |
$[403, 158379, 62564944, 24840320739, 9861720656983, 3915101724970176, 1554295346702791459, 617055253377773165475, 244970935602421938012688, 97253461433811783746649939]$ |
$403$ |
$[403, 158379, 62564944, 24840320739, 9861720656983, 3915101724970176, 1554295346702791459, 617055253377773165475, 244970935602421938012688, 97253461433811783746649939]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1563}) \) |
$C_2$ |
simple |
| 1.397.g |
$1$ |
$\F_{397}$ |
$397$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 6 x + 397 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$404$ |
$[404, 158368, 62563844, 24840337536, 9861721269044, 3915101710934176, 1554295346452866596, 617055253386767774208, 244970935602493764293588, 97253461433806885721764768]$ |
$404$ |
$[404, 158368, 62563844, 24840337536, 9861721269044, 3915101710934176, 1554295346452866596, 617055253386767774208, 244970935602493764293588, 97253461433806885721764768]$ |
$12$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-97}) \) |
$C_2$ |
simple |
| 1.397.h |
$1$ |
$\F_{397}$ |
$397$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 7 x + 397 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$405$ |
$[405, 158355, 62562780, 24840357075, 9861721814025, 3915101695055040, 1554295346270546445, 617055253396520724675, 244970935602515453894220, 97253461433801893939411275]$ |
$405$ |
$[405, 158355, 62562780, 24840357075, 9861721814025, 3915101695055040, 1554295346270546445, 617055253396520724675, 244970935602515453894220, 97253461433801893939411275]$ |
$17$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-19}) \) |
$C_2$ |
simple |
| 1.397.i |
$1$ |
$\F_{397}$ |
$397$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 8 x + 397 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$406$ |
$[406, 158340, 62561758, 24840379200, 9861722282566, 3915101677670820, 1554295346162371918, 617055253406642668800, 244970935602485249831926, 97253461433797127436677700]$ |
$406$ |
$[406, 158340, 62561758, 24840379200, 9861722282566, 3915101677670820, 1554295346162371918, 617055253406642668800, 244970935602485249831926, 97253461433797127436677700]$ |
$20$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-381}) \) |
$C_2$ |
simple |
| 1.397.j |
$1$ |
$\F_{397}$ |
$397$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 9 x + 397 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$407$ |
$[407, 158323, 62560784, 24840403731, 9861722666147, 3915101659158976, 1554295346132843567, 617055253416720813123, 244970935602403973547728, 97253461433792898380587243]$ |
$407$ |
$[407, 158323, 62560784, 24840403731, 9861722666147, 3915101659158976, 1554295346132843567, 617055253416720813123, 244970935602403973547728, 97253461433792898380587243]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1507}) \) |
$C_2$ |
simple |
| 1.397.k |
$1$ |
$\F_{397}$ |
$397$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 10 x + 397 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$408$ |
$[408, 158304, 62559864, 24840430464, 9861722957208, 3915101639930976, 1554295346184230904, 617055253426333171200, 244970935602275075309208, 97253461433789493013748064]$ |
$408$ |
$[408, 158304, 62559864, 24840430464, 9861722957208, 3915101639930976, 1554295346184230904, 617055253426333171200, 244970935602275075309208, 97253461433789493013748064]$ |
$12$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-93}) \) |
$C_2$ |
simple |