| Label |
Dimension |
Base field |
Base char. |
Simple |
Geom. simple |
Primitive |
Ordinary |
Almost ordinary |
Supersingular |
Princ. polarizable |
Jacobian |
L-polynomial |
Newton slopes |
Newton elevation |
$p$-rank |
$p$-corank |
Angle rank |
Angle corank |
$\mathbb{F}_q$ points on curve |
$\mathbb{F}_{q^k}$ points on curve |
$\mathbb{F}_q$ points on variety |
$\mathbb{F}_{q^k}$ points on variety |
Jacobians |
Hyperelliptic Jacobians |
Num. twists |
Max. twist degree |
End. degree |
Number fields |
Galois groups |
Isogeny factors |
| 1.383.abn |
$1$ |
$\F_{383}$ |
$383$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 39 x + 383 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$345$ |
$[345, 145935, 56167380, 21517386075, 8241259589475, 3156404328762480, 1208902893672833445, 463009808941214886675, 177332756836706713096380, 67918445868680795127893175]$ |
$345$ |
$[345, 145935, 56167380, 21517386075, 8241259589475, 3156404328762480, 1208902893672833445, 463009808941214886675, 177332756836706713096380, 67918445868680795127893175]$ |
$1$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-11}) \) |
$C_2$ |
simple |
| 1.383.abm |
$1$ |
$\F_{383}$ |
$383$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 38 x + 383 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$346$ |
$[346, 146012, 56170678, 21517496416, 8241262795946, 3156404413580444, 1208902895765955974, 463009808990090763648, 177332756837795828729914, 67918445868704070474421532]$ |
$346$ |
$[346, 146012, 56170678, 21517496416, 8241262795946, 3156404413580444, 1208902895765955974, 463009808990090763648, 177332756837795828729914, 67918445868704070474421532]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-22}) \) |
$C_2$ |
simple |
| 1.383.abl |
$1$ |
$\F_{383}$ |
$383$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 37 x + 383 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$347$ |
$[347, 146087, 56173748, 21517592491, 8241265341217, 3156404472984944, 1208902897002384007, 463009809012816055923, 177332756838147734967644, 67918445868707906515977407]$ |
$347$ |
$[347, 146087, 56173748, 21517592491, 8241265341217, 3156404472984944, 1208902897002384007, 463009809012816055923, 177332756838147734967644, 67918445868707906515977407]$ |
$1$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-163}) \) |
$C_2$ |
simple |
| 1.383.abk |
$1$ |
$\F_{383}$ |
$383$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 36 x + 383 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$348$ |
$[348, 146160, 56176596, 21517675200, 8241267298188, 3156404511239280, 1208902897583916036, 463009809017592748800, 177332756838058866212028, 67918445868702045158866800]$ |
$348$ |
$[348, 146160, 56176596, 21517675200, 8241267298188, 3156404511239280, 1208902897583916036, 463009809017592748800, 177332756838058866212028, 67918445868702045158866800]$ |
$12$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-59}) \) |
$C_2$ |
simple |
| 1.383.abj |
$1$ |
$\F_{383}$ |
$383$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 35 x + 383 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$349$ |
$[349, 146231, 56179228, 21517745419, 8241268735319, 3156404532168944, 1208902897681674593, 463009809010909655475, 177332756837744636793364, 67918445868692863014176111]$ |
$349$ |
$[349, 146231, 56179228, 21517745419, 8241268735319, 3156404532168944, 1208902897681674593, 463009809010909655475, 177332756837744636793364, 67918445868692863014176111]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-307}) \) |
$C_2$ |
simple |
| 1.383.abi |
$1$ |
$\F_{383}$ |
$383$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 34 x + 383 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$350$ |
$[350, 146300, 56181650, 21517804000, 8241269716750, 3156404539187900, 1208902897439142850, 463009808997788976000, 177332756837355226817150, 67918445868684218784861500]$ |
$350$ |
$[350, 146300, 56181650, 21517804000, 8241269716750, 3156404539187900, 1208902897439142850, 463009808997788976000, 177332756837355226817150, 67918445868684218784861500]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-94}) \) |
$C_2$ |
simple |
| 1.383.abh |
$1$ |
$\F_{383}$ |
$383$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 33 x + 383 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$351$ |
$[351, 146367, 56183868, 21517851771, 8241270302421, 3156404535324144, 1208902896975019779, 463009808982008924883, 177332756836989168414324, 67918445868678142516760007]$ |
$351$ |
$[351, 146367, 56183868, 21517851771, 8241270302421, 3156404535324144, 1208902896975019779, 463009808982008924883, 177332756836989168414324, 67918445868678142516760007]$ |
$5$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-443}) \) |
$C_2$ |
simple |
| 1.383.abg |
$1$ |
$\F_{383}$ |
$383$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 32 x + 383 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$352$ |
$[352, 146432, 56185888, 21517889536, 8241270548192, 3156404523244544, 1208902896385898912, 463009808966303858688, 177332756836704943787104, 67918445868675388327058432]$ |
$352$ |
$[352, 146432, 56185888, 21517889536, 8241270548192, 3156404523244544, 1208902896385898912, 463009808966303858688, 177332756836704943787104, 67918445868675388327058432]$ |
$10$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-127}) \) |
$C_2$ |
simple |
| 1.383.abf |
$1$ |
$\F_{383}$ |
$383$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 31 x + 383 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$353$ |
$[353, 146495, 56187716, 21517918075, 8241270505963, 3156404505278960, 1208902895748775741, 463009808952543294675, 177332756836530793742348, 67918445868675870154331975]$ |
$353$ |
$[353, 146495, 56187716, 21517918075, 8241270505963, 3156404505278960, 1208902895748775741, 463009808952543294675, 177332756836530793742348, 67918445868675870154331975]$ |
$5$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-571}) \) |
$C_2$ |
simple |
| 1.383.abe |
$1$ |
$\F_{383}$ |
$383$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 30 x + 383 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$354$ |
$[354, 146556, 56189358, 21517938144, 8241270223794, 3156404483443644, 1208902895123388798, 463009808941891171200, 177332756836472923066434, 67918445868678998130034236]$ |
$354$ |
$[354, 146556, 56189358, 21517938144, 8241270223794, 3156404483443644, 1208902895123388798, 463009808941891171200, 177332756836472923066434, 67918445868678998130034236]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-158}) \) |
$C_2$ |
simple |
| 1.383.abd |
$1$ |
$\F_{383}$ |
$383$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 29 x + 383 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$355$ |
$[355, 146615, 56190820, 21517950475, 8241269746025, 3156404459463920, 1208902894554399455, 463009808934946660275, 177332756836522277120620, 67918445868683931348654575]$ |
$355$ |
$[355, 146615, 56190820, 21517950475, 8241269746025, 3156404459463920, 1208902894554399455, 463009808934946660275, 177332756836522277120620, 67918445868683931348654575]$ |
$5$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-691}) \) |
$C_2$ |
simple |
| 1.383.abc |
$1$ |
$\F_{383}$ |
$383$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 28 x + 383 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$356$ |
$[356, 146672, 56192108, 21517955776, 8241269113396, 3156404434796144, 1208902894073415484, 463009808931867802368, 177332756836660052423684, 67918445868689761109029232]$ |
$356$ |
$[356, 146672, 56192108, 21517955776, 8241269113396, 3156404434796144, 1208902894073415484, 463009808931867802368, 177332756836660052423684, 67918445868689761109029232]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-187}) \) |
$C_2$ |
simple |
| 1.383.abb |
$1$ |
$\F_{383}$ |
$383$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 27 x + 383 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$357$ |
$[357, 146727, 56193228, 21517954731, 8241268363167, 3156404410648944, 1208902893700863417, 463009808932479193203, 177332756836862092739364, 67918445868695637108870207]$ |
$357$ |
$[357, 146727, 56193228, 21517954731, 8241268363167, 3156404410648944, 1208902893700863417, 463009808932479193203, 177332756836862092739364, 67918445868695637108870207]$ |
$10$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-803}) \) |
$C_2$ |
simple |
| 1.383.aba |
$1$ |
$\F_{383}$ |
$383$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 26 x + 383 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$358$ |
$[358, 146780, 56194186, 21517948000, 8241267529238, 3156404388003740, 1208902893447714746, 463009808936364912000, 177332756837102311299718, 67918445868700847594831900]$ |
$358$ |
$[358, 146780, 56194186, 21517948000, 8241267529238, 3156404388003740, 1208902893447714746, 463009808936364912000, 177332756837102311299718, 67918445868700847594831900]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-214}) \) |
$C_2$ |
simple |
| 1.383.az |
$1$ |
$\F_{383}$ |
$383$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 25 x + 383 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$359$ |
$[359, 146831, 56194988, 21517936219, 8241266642269, 3156404367634544, 1208902893317071003, 463009808942947840275, 177332756837355269272004, 67918445868704863097741111]$ |
$359$ |
$[359, 146831, 56194988, 21517936219, 8241266642269, 3156404367634544, 1208902893317071003, 463009808942947840275, 177332756837355269272004, 67918445868704863097741111]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-907}) \) |
$C_2$ |
simple |
| 1.383.ay |
$1$ |
$\F_{383}$ |
$383$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 24 x + 383 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$360$ |
$[360, 146880, 56195640, 21517920000, 8241265729800, 3156404350127040, 1208902893305612760, 463009808951556480000, 177332756837598030416040, 67918445868707352113342400]$ |
$360$ |
$[360, 146880, 56195640, 21517920000, 8241265729800, 3156404350127040, 1208902893305612760, 463009808951556480000, 177332756837598030416040, 67918445868707352113342400]$ |
$30$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-239}) \) |
$C_2$ |
simple |
| 1.383.ax |
$1$ |
$\F_{383}$ |
$383$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 23 x + 383 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$361$ |
$[361, 146927, 56196148, 21517899931, 8241264816371, 3156404335896944, 1208902893404917589, 463009808961480339603, 177332756837811402081244, 67918445868708175919429207]$ |
$361$ |
$[361, 146927, 56196148, 21517899931, 8241264816371, 3156404335896944, 1208902893404917589, 463009808961480339603, 177332756837811402081244, 67918445868708175919429207]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1003}) \) |
$C_2$ |
simple |
| 1.383.aw |
$1$ |
$\F_{383}$ |
$383$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 22 x + 383 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$362$ |
$[362, 146972, 56196518, 21517876576, 8241263923642, 3156404325207644, 1208902893602652022, 463009808972014915968, 177332756837980663257674, 67918445868707368646912732]$ |
$362$ |
$[362, 146972, 56196518, 21517876576, 8241263923642, 3156404325207644, 1208902893602652022, 463009808972014915968, 177332756837980663257674, 67918445868707368646912732]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-262}) \) |
$C_2$ |
simple |
| 1.383.av |
$1$ |
$\F_{383}$ |
$383$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 21 x + 383 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$363$ |
$[363, 147015, 56196756, 21517850475, 8241263070513, 3156404318187120, 1208902893883642551, 463009808982497260275, 177332756838095871323388, 67918445868705107741596575]$ |
$363$ |
$[363, 147015, 56196756, 21517850475, 8241263070513, 3156404318187120, 1208902893883642551, 463009808982497260275, 177332756838095871323388, 67918445868705107741596575]$ |
$17$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1091}) \) |
$C_2$ |
simple |
| 1.383.au |
$1$ |
$\F_{383}$ |
$383$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 20 x + 383 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$364$ |
$[364, 147056, 56196868, 21517822144, 8241262273244, 3156404314844144, 1208902894230830708, 463009808992333075200, 177332756838151830421324, 67918445868701679061546736]$ |
$364$ |
$[364, 147056, 56196868, 21517822144, 8241262273244, 3156404314844144, 1208902894230830708, 463009808992333075200, 177332756838151830421324, 67918445868701679061546736]$ |
$12$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-283}) \) |
$C_2$ |
simple |
| 1.383.at |
$1$ |
$\F_{383}$ |
$383$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 19 x + 383 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$365$ |
$[365, 147095, 56196860, 21517792075, 8241261545575, 3156404315083760, 1208902894626117265, 463009809001016250675, 177332756838147796052660, 67918445868697440048344975]$ |
$365$ |
$[365, 147095, 56196860, 21517792075, 8241261545575, 3156404315083760, 1208902894626117265, 463009809001016250675, 177332756838147796052660, 67918445868697440048344975]$ |
$7$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1171}) \) |
$C_2$ |
simple |
| 1.383.as |
$1$ |
$\F_{383}$ |
$383$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 18 x + 383 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$366$ |
$[366, 147132, 56196738, 21517760736, 8241260898846, 3156404318722044, 1208902895051100594, 463009809008141705088, 177332756838086982490254, 67918445868692783685559932]$ |
$366$ |
$[366, 147132, 56196738, 21517760736, 8241260898846, 3156404318722044, 1208902895051100594, 463009809008141705088, 177332756838086982490254, 67918445868692783685559932]$ |
$12$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-302}) \) |
$C_2$ |
simple |
| 1.383.ar |
$1$ |
$\F_{383}$ |
$383$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 17 x + 383 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$367$ |
$[367, 147167, 56196508, 21517728571, 8241260342117, 3156404325500144, 1208902895487714227, 463009809013412358483, 177332756837975931995284, 67918445868688105310836007]$ |
$367$ |
$[367, 147167, 56196508, 21517728571, 8241260342117, 3156404325500144, 1208902895487714227, 463009809013412358483, 177332756837975931995284, 67918445868688105310836007]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1243}) \) |
$C_2$ |
simple |
| 1.383.aq |
$1$ |
$\F_{383}$ |
$383$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 16 x + 383 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$368$ |
$[368, 147200, 56196176, 21517696000, 8241259882288, 3156404335097600, 1208902895918768656, 463009809016641024000, 177332756837823797562608, 67918445868683773775456000]$ |
$368$ |
$[368, 147200, 56196176, 21517696000, 8241259882288, 3156404335097600, 1208902895918768656, 463009809016641024000, 177332756837823797562608, 67918445868683773775456000]$ |
$20$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-319}) \) |
$C_2$ |
simple |
| 1.383.ap |
$1$ |
$\F_{383}$ |
$383$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 15 x + 383 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$369$ |
$[369, 147231, 56195748, 21517663419, 8241259524219, 3156404347144944, 1208902896328402413, 463009809017747963475, 177332756837641584025644, 67918445868680107943451111]$ |
$369$ |
$[369, 147231, 56195748, 21517663419, 8241259524219, 3156404347144944, 1208902896328402413, 463009809017747963475, 177332756837641584025644, 67918445868680107943451111]$ |
$11$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1307}) \) |
$C_2$ |
simple |
| 1.383.ao |
$1$ |
$\F_{383}$ |
$383$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 14 x + 383 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$370$ |
$[370, 147260, 56195230, 21517631200, 8241259270850, 3156404361235580, 1208902896702447470, 463009809016754812800, 177332756837441385819730, 67918445868677359087682300]$ |
$370$ |
$[370, 147260, 56195230, 21517631200, 8241259270850, 3156404361235580, 1208902896702447470, 463009809016754812800, 177332756837441385819730, 67918445868677359087682300]$ |
$12$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-334}) \) |
$C_2$ |
simple |
| 1.383.an |
$1$ |
$\F_{383}$ |
$383$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 13 x + 383 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$371$ |
$[371, 147287, 56194628, 21517599691, 8241259123321, 3156404376936944, 1208902897028713999, 463009809013775542323, 177332756837235653533964, 67918445868675699369171407]$ |
$371$ |
$[371, 147287, 56194628, 21517599691, 8241259123321, 3156404376936944, 1208902897028713999, 463009809013775542323, 177332756837235653533964, 67918445868675699369171407]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1363}) \) |
$C_2$ |
simple |
| 1.383.am |
$1$ |
$\F_{383}$ |
$383$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 12 x + 383 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$372$ |
$[372, 147312, 56193948, 21517569216, 8241259081092, 3156404393800944, 1208902897297199532, 463009809009005077248, 177332756837036515575444, 67918445868675216274690032]$ |
$372$ |
$[372, 147312, 56193948, 21517569216, 8241259081092, 3156404393800944, 1208902897297199532, 463009809009005077248, 177332756837036515575444, 67918445868675216274690032]$ |
$20$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-347}) \) |
$C_2$ |
simple |
| 1.383.al |
$1$ |
$\F_{383}$ |
$383$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 11 x + 383 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$373$ |
$[373, 147335, 56193196, 21517540075, 8241259142063, 3156404411373680, 1208902897500227561, 463009809002706162675, 177332756836855175826628, 67918445868675912632590175]$ |
$373$ |
$[373, 147335, 56193196, 21517540075, 8241259142063, 3156404411373680, 1208902897500227561, 463009809002706162675, 177332756836855175826628, 67918445868675912632590175]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1411}) \) |
$C_2$ |
simple |
| 1.383.ak |
$1$ |
$\F_{383}$ |
$383$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 10 x + 383 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$374$ |
$[374, 147356, 56192378, 21517512544, 8241259302694, 3156404429204444, 1208902897632520618, 463009808995195017600, 177332756836701403096214, 67918445868677711624454236]$ |
$374$ |
$[374, 147356, 56192378, 21517512544, 8241259302694, 3156404429204444, 1208902897632520618, 463009808995195017600, 177332756836701403096214, 67918445868677711624454236]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-358}) \) |
$C_2$ |
simple |
| 1.383.aj |
$1$ |
$\F_{383}$ |
$383$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 9 x + 383 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$375$ |
$[375, 147375, 56191500, 21517486875, 8241259558125, 3156404446854000, 1208902897691212875, 463009808986826281875, 177332756836583123446500, 67918445868680466056724375]$ |
$375$ |
$[375, 147375, 56191500, 21517486875, 8241259558125, 3156404446854000, 1208902897691212875, 463009808986826281875, 177332756836583123446500, 67918445868680466056724375]$ |
$13$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1451}) \) |
$C_2$ |
simple |
| 1.383.ai |
$1$ |
$\F_{383}$ |
$383$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 8 x + 383 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$376$ |
$[376, 147392, 56190568, 21517463296, 8241259902296, 3156404463902144, 1208902897675807304, 463009808977977719808, 177332756836506122125624, 67918445868683971048413632]$ |
$376$ |
$[376, 147392, 56190568, 21517463296, 8241259902296, 3156404463902144, 1208902897675807304, 463009808977977719808, 177332756836506122125624, 67918445868683971048413632]$ |
$18$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-367}) \) |
$C_2$ |
simple |
| 1.383.ah |
$1$ |
$\F_{383}$ |
$383$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 7 x + 383 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$377$ |
$[377, 147407, 56189588, 21517442011, 8241260328067, 3156404479954544, 1208902897588082437, 463009808969035103763, 177332756836473857841404, 67918445868687979224674807]$ |
$377$ |
$[377, 147407, 56189588, 21517442011, 8241260328067, 3156404479954544, 1208902897588082437, 463009808969035103763, 177332756836473857841404, 67918445868687979224674807]$ |
$7$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1483}) \) |
$C_2$ |
simple |
| 1.383.ag |
$1$ |
$\F_{383}$ |
$383$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 6 x + 383 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$378$ |
$[378, 147420, 56188566, 21517423200, 8241260827338, 3156404494648860, 1208902897431953766, 463009808960377660800, 177332756836487388484698, 67918445868692217477779100]$ |
$378$ |
$[378, 147420, 56188566, 21517423200, 8241260827338, 3156404494648860, 1208902897431953766, 463009808960377660800, 177332756836487388484698, 67918445868692217477779100]$ |
$28$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-374}) \) |
$C_2$ |
simple |
| 1.383.af |
$1$ |
$\F_{383}$ |
$383$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 5 x + 383 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$379$ |
$[379, 147431, 56187508, 21517407019, 8241261391169, 3156404507660144, 1208902897213294823, 463009808952364425075, 177332756836545404144284, 67918445868696404363306111]$ |
$379$ |
$[379, 147431, 56187508, 21517407019, 8241261391169, 3156404507660144, 1208902897213294823, 463009808952364425075, 177332756836545404144284, 67918445868696404363306111]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1507}) \) |
$C_2$ |
simple |
| 1.383.ae |
$1$ |
$\F_{383}$ |
$383$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 4 x + 383 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$380$ |
$[380, 147440, 56186420, 21517393600, 8241262009900, 3156404518705520, 1208902896939722980, 463009808945321798400, 177332756836644360352220, 67918445868700267236441200]$ |
$380$ |
$[380, 147440, 56186420, 21517393600, 8241262009900, 3156404518705520, 1208902896939722980, 463009808945321798400, 177332756836644360352220, 67918445868700267236441200]$ |
$12$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-379}) \) |
$C_2$ |
simple |
| 1.383.ad |
$1$ |
$\F_{383}$ |
$383$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 3 x + 383 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$381$ |
$[381, 147447, 56185308, 21517383051, 8241262673271, 3156404527548144, 1208902896620355009, 463009808939532581043, 177332756836778701958484, 67918445868703558297586607]$ |
$381$ |
$[381, 147447, 56185308, 21517383051, 8241262673271, 3156404527548144, 1208902896620355009, 463009808939532581043, 177332756836778701958484, 67918445868703558297586607]$ |
$7$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1523}) \) |
$C_2$ |
simple |
| 1.383.ac |
$1$ |
$\F_{383}$ |
$383$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 2 x + 383 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$382$ |
$[382, 147452, 56184178, 21517375456, 8241263370542, 3156404534000444, 1208902896265537442, 463009808935226694528, 177332756836941165856414, 67918445868706068804390332]$ |
$382$ |
$[382, 147452, 56184178, 21517375456, 8241263370542, 3156404534000444, 1208902896265537442, 463009808935226694528, 177332756836941165856414, 67918445868706068804390332]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-382}) \) |
$C_2$ |
simple |
| 1.383.ab |
$1$ |
$\F_{383}$ |
$383$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - x + 383 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$383$ |
$[383, 147455, 56183036, 21517370875, 8241264090613, 3156404537926640, 1208902895886556771, 463009808932573777875, 177332756837123148966068, 67918445868707640815152775]$ |
$383$ |
$[383, 147455, 56183036, 21517370875, 8241264090613, 3156404537926640, 1208902895886556771, 463009808932573777875, 177332756837123148966068, 67918445868707640815152775]$ |
$11$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1531}) \) |
$C_2$ |
simple |
| 1.383.a |
$1$ |
$\F_{383}$ |
$383$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 + 383 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$384$ |
$[384, 147456, 56181888, 21517369344, 8241264822144, 3156404539244544, 1208902895495334528, 463009808931677798400, 177332756837315126431104, 67918445868708175952756736]$ |
$384$ |
$[384, 147456, 56181888, 21517369344, 8241264822144, 3156404539244544, 1208902895495334528, 463009808931677798400, 177332756837315126431104, 67918445868708175952756736]$ |
$34$ |
$0$ |
$1$ |
$1$ |
$2$ |
\(\Q(\sqrt{-383}) \) |
$C_2$ |
simple |
| 1.383.b |
$1$ |
$\F_{383}$ |
$383$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + x + 383 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$385$ |
$[385, 147455, 56180740, 21517370875, 8241265553675, 3156404537926640, 1208902895104112285, 463009808932573777875, 177332756837507103896140, 67918445868707640815152775]$ |
$385$ |
$[385, 147455, 56180740, 21517370875, 8241265553675, 3156404537926640, 1208902895104112285, 463009808932573777875, 177332756837507103896140, 67918445868707640815152775]$ |
$11$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1531}) \) |
$C_2$ |
simple |
| 1.383.c |
$1$ |
$\F_{383}$ |
$383$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 2 x + 383 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$386$ |
$[386, 147452, 56179598, 21517375456, 8241266273746, 3156404534000444, 1208902894725131614, 463009808935226694528, 177332756837689087005794, 67918445868706068804390332]$ |
$386$ |
$[386, 147452, 56179598, 21517375456, 8241266273746, 3156404534000444, 1208902894725131614, 463009808935226694528, 177332756837689087005794, 67918445868706068804390332]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-382}) \) |
$C_2$ |
simple |
| 1.383.d |
$1$ |
$\F_{383}$ |
$383$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 3 x + 383 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$387$ |
$[387, 147447, 56178468, 21517383051, 8241266971017, 3156404527548144, 1208902894370314047, 463009808939532581043, 177332756837851550903724, 67918445868703558297586607]$ |
$387$ |
$[387, 147447, 56178468, 21517383051, 8241266971017, 3156404527548144, 1208902894370314047, 463009808939532581043, 177332756837851550903724, 67918445868703558297586607]$ |
$7$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1523}) \) |
$C_2$ |
simple |
| 1.383.e |
$1$ |
$\F_{383}$ |
$383$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 4 x + 383 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$388$ |
$[388, 147440, 56177356, 21517393600, 8241267634388, 3156404518705520, 1208902894050946076, 463009808945321798400, 177332756837985892509988, 67918445868700267236441200]$ |
$388$ |
$[388, 147440, 56177356, 21517393600, 8241267634388, 3156404518705520, 1208902894050946076, 463009808945321798400, 177332756837985892509988, 67918445868700267236441200]$ |
$12$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-379}) \) |
$C_2$ |
simple |
| 1.383.f |
$1$ |
$\F_{383}$ |
$383$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 5 x + 383 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$389$ |
$[389, 147431, 56176268, 21517407019, 8241268253119, 3156404507660144, 1208902893777374233, 463009808952364425075, 177332756838084848717924, 67918445868696404363306111]$ |
$389$ |
$[389, 147431, 56176268, 21517407019, 8241268253119, 3156404507660144, 1208902893777374233, 463009808952364425075, 177332756838084848717924, 67918445868696404363306111]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1507}) \) |
$C_2$ |
simple |
| 1.383.g |
$1$ |
$\F_{383}$ |
$383$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 6 x + 383 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$390$ |
$[390, 147420, 56175210, 21517423200, 8241268816950, 3156404494648860, 1208902893558715290, 463009808960377660800, 177332756838142864377510, 67918445868692217477779100]$ |
$390$ |
$[390, 147420, 56175210, 21517423200, 8241268816950, 3156404494648860, 1208902893558715290, 463009808960377660800, 177332756838142864377510, 67918445868692217477779100]$ |
$28$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-374}) \) |
$C_2$ |
simple |
| 1.383.h |
$1$ |
$\F_{383}$ |
$383$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 7 x + 383 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$391$ |
$[391, 147407, 56174188, 21517442011, 8241269316221, 3156404479954544, 1208902893402586619, 463009808969035103763, 177332756838156395020804, 67918445868687979224674807]$ |
$391$ |
$[391, 147407, 56174188, 21517442011, 8241269316221, 3156404479954544, 1208902893402586619, 463009808969035103763, 177332756838156395020804, 67918445868687979224674807]$ |
$7$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1483}) \) |
$C_2$ |
simple |
| 1.383.i |
$1$ |
$\F_{383}$ |
$383$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 8 x + 383 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$392$ |
$[392, 147392, 56173208, 21517463296, 8241269741992, 3156404463902144, 1208902893314861752, 463009808977977719808, 177332756838124130736584, 67918445868683971048413632]$ |
$392$ |
$[392, 147392, 56173208, 21517463296, 8241269741992, 3156404463902144, 1208902893314861752, 463009808977977719808, 177332756838124130736584, 67918445868683971048413632]$ |
$18$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-367}) \) |
$C_2$ |
simple |
| 1.383.j |
$1$ |
$\F_{383}$ |
$383$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 9 x + 383 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$393$ |
$[393, 147375, 56172276, 21517486875, 8241270086163, 3156404446854000, 1208902893299456181, 463009808986826281875, 177332756838047129415708, 67918445868680466056724375]$ |
$393$ |
$[393, 147375, 56172276, 21517486875, 8241270086163, 3156404446854000, 1208902893299456181, 463009808986826281875, 177332756838047129415708, 67918445868680466056724375]$ |
$13$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1451}) \) |
$C_2$ |
simple |
| 1.383.k |
$1$ |
$\F_{383}$ |
$383$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 10 x + 383 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$394$ |
$[394, 147356, 56171398, 21517512544, 8241270341594, 3156404429204444, 1208902893358148438, 463009808995195017600, 177332756837928849765994, 67918445868677711624454236]$ |
$394$ |
$[394, 147356, 56171398, 21517512544, 8241270341594, 3156404429204444, 1208902893358148438, 463009808995195017600, 177332756837928849765994, 67918445868677711624454236]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-358}) \) |
$C_2$ |
simple |