Learn more

Refine search


Results (1-50 of 79 matches)

Next   displayed columns for results
Label Dimension Base field L-polynomial $p$-rank Number fields Galois groups Isogeny factors
1.383.abn $1$ $\F_{383}$ $1 - 39 x + 383 x^{2}$ $1$ \(\Q(\sqrt{-11}) \) $C_2$
1.383.abm $1$ $\F_{383}$ $1 - 38 x + 383 x^{2}$ $1$ \(\Q(\sqrt{-22}) \) $C_2$
1.383.abl $1$ $\F_{383}$ $1 - 37 x + 383 x^{2}$ $1$ \(\Q(\sqrt{-163}) \) $C_2$
1.383.abk $1$ $\F_{383}$ $1 - 36 x + 383 x^{2}$ $1$ \(\Q(\sqrt{-59}) \) $C_2$
1.383.abj $1$ $\F_{383}$ $1 - 35 x + 383 x^{2}$ $1$ \(\Q(\sqrt{-307}) \) $C_2$
1.383.abi $1$ $\F_{383}$ $1 - 34 x + 383 x^{2}$ $1$ \(\Q(\sqrt{-94}) \) $C_2$
1.383.abh $1$ $\F_{383}$ $1 - 33 x + 383 x^{2}$ $1$ \(\Q(\sqrt{-443}) \) $C_2$
1.383.abg $1$ $\F_{383}$ $1 - 32 x + 383 x^{2}$ $1$ \(\Q(\sqrt{-127}) \) $C_2$
1.383.abf $1$ $\F_{383}$ $1 - 31 x + 383 x^{2}$ $1$ \(\Q(\sqrt{-571}) \) $C_2$
1.383.abe $1$ $\F_{383}$ $1 - 30 x + 383 x^{2}$ $1$ \(\Q(\sqrt{-158}) \) $C_2$
1.383.abd $1$ $\F_{383}$ $1 - 29 x + 383 x^{2}$ $1$ \(\Q(\sqrt{-691}) \) $C_2$
1.383.abc $1$ $\F_{383}$ $1 - 28 x + 383 x^{2}$ $1$ \(\Q(\sqrt{-187}) \) $C_2$
1.383.abb $1$ $\F_{383}$ $1 - 27 x + 383 x^{2}$ $1$ \(\Q(\sqrt{-803}) \) $C_2$
1.383.aba $1$ $\F_{383}$ $1 - 26 x + 383 x^{2}$ $1$ \(\Q(\sqrt{-214}) \) $C_2$
1.383.az $1$ $\F_{383}$ $1 - 25 x + 383 x^{2}$ $1$ \(\Q(\sqrt{-907}) \) $C_2$
1.383.ay $1$ $\F_{383}$ $1 - 24 x + 383 x^{2}$ $1$ \(\Q(\sqrt{-239}) \) $C_2$
1.383.ax $1$ $\F_{383}$ $1 - 23 x + 383 x^{2}$ $1$ \(\Q(\sqrt{-1003}) \) $C_2$
1.383.aw $1$ $\F_{383}$ $1 - 22 x + 383 x^{2}$ $1$ \(\Q(\sqrt{-262}) \) $C_2$
1.383.av $1$ $\F_{383}$ $1 - 21 x + 383 x^{2}$ $1$ \(\Q(\sqrt{-1091}) \) $C_2$
1.383.au $1$ $\F_{383}$ $1 - 20 x + 383 x^{2}$ $1$ \(\Q(\sqrt{-283}) \) $C_2$
1.383.at $1$ $\F_{383}$ $1 - 19 x + 383 x^{2}$ $1$ \(\Q(\sqrt{-1171}) \) $C_2$
1.383.as $1$ $\F_{383}$ $1 - 18 x + 383 x^{2}$ $1$ \(\Q(\sqrt{-302}) \) $C_2$
1.383.ar $1$ $\F_{383}$ $1 - 17 x + 383 x^{2}$ $1$ \(\Q(\sqrt{-1243}) \) $C_2$
1.383.aq $1$ $\F_{383}$ $1 - 16 x + 383 x^{2}$ $1$ \(\Q(\sqrt{-319}) \) $C_2$
1.383.ap $1$ $\F_{383}$ $1 - 15 x + 383 x^{2}$ $1$ \(\Q(\sqrt{-1307}) \) $C_2$
1.383.ao $1$ $\F_{383}$ $1 - 14 x + 383 x^{2}$ $1$ \(\Q(\sqrt{-334}) \) $C_2$
1.383.an $1$ $\F_{383}$ $1 - 13 x + 383 x^{2}$ $1$ \(\Q(\sqrt{-1363}) \) $C_2$
1.383.am $1$ $\F_{383}$ $1 - 12 x + 383 x^{2}$ $1$ \(\Q(\sqrt{-347}) \) $C_2$
1.383.al $1$ $\F_{383}$ $1 - 11 x + 383 x^{2}$ $1$ \(\Q(\sqrt{-1411}) \) $C_2$
1.383.ak $1$ $\F_{383}$ $1 - 10 x + 383 x^{2}$ $1$ \(\Q(\sqrt{-358}) \) $C_2$
1.383.aj $1$ $\F_{383}$ $1 - 9 x + 383 x^{2}$ $1$ \(\Q(\sqrt{-1451}) \) $C_2$
1.383.ai $1$ $\F_{383}$ $1 - 8 x + 383 x^{2}$ $1$ \(\Q(\sqrt{-367}) \) $C_2$
1.383.ah $1$ $\F_{383}$ $1 - 7 x + 383 x^{2}$ $1$ \(\Q(\sqrt{-1483}) \) $C_2$
1.383.ag $1$ $\F_{383}$ $1 - 6 x + 383 x^{2}$ $1$ \(\Q(\sqrt{-374}) \) $C_2$
1.383.af $1$ $\F_{383}$ $1 - 5 x + 383 x^{2}$ $1$ \(\Q(\sqrt{-1507}) \) $C_2$
1.383.ae $1$ $\F_{383}$ $1 - 4 x + 383 x^{2}$ $1$ \(\Q(\sqrt{-379}) \) $C_2$
1.383.ad $1$ $\F_{383}$ $1 - 3 x + 383 x^{2}$ $1$ \(\Q(\sqrt{-1523}) \) $C_2$
1.383.ac $1$ $\F_{383}$ $1 - 2 x + 383 x^{2}$ $1$ \(\Q(\sqrt{-382}) \) $C_2$
1.383.ab $1$ $\F_{383}$ $1 - x + 383 x^{2}$ $1$ \(\Q(\sqrt{-1531}) \) $C_2$
1.383.a $1$ $\F_{383}$ $1 + 383 x^{2}$ $0$ \(\Q(\sqrt{-383}) \) $C_2$
1.383.b $1$ $\F_{383}$ $1 + x + 383 x^{2}$ $1$ \(\Q(\sqrt{-1531}) \) $C_2$
1.383.c $1$ $\F_{383}$ $1 + 2 x + 383 x^{2}$ $1$ \(\Q(\sqrt{-382}) \) $C_2$
1.383.d $1$ $\F_{383}$ $1 + 3 x + 383 x^{2}$ $1$ \(\Q(\sqrt{-1523}) \) $C_2$
1.383.e $1$ $\F_{383}$ $1 + 4 x + 383 x^{2}$ $1$ \(\Q(\sqrt{-379}) \) $C_2$
1.383.f $1$ $\F_{383}$ $1 + 5 x + 383 x^{2}$ $1$ \(\Q(\sqrt{-1507}) \) $C_2$
1.383.g $1$ $\F_{383}$ $1 + 6 x + 383 x^{2}$ $1$ \(\Q(\sqrt{-374}) \) $C_2$
1.383.h $1$ $\F_{383}$ $1 + 7 x + 383 x^{2}$ $1$ \(\Q(\sqrt{-1483}) \) $C_2$
1.383.i $1$ $\F_{383}$ $1 + 8 x + 383 x^{2}$ $1$ \(\Q(\sqrt{-367}) \) $C_2$
1.383.j $1$ $\F_{383}$ $1 + 9 x + 383 x^{2}$ $1$ \(\Q(\sqrt{-1451}) \) $C_2$
1.383.k $1$ $\F_{383}$ $1 + 10 x + 383 x^{2}$ $1$ \(\Q(\sqrt{-358}) \) $C_2$
Next   displayed columns for results