| Label |
Dimension |
Base field |
Base char. |
Simple |
Geom. simple |
Primitive |
Ordinary |
Almost ordinary |
Supersingular |
Princ. polarizable |
Jacobian |
L-polynomial |
Newton slopes |
Newton elevation |
$p$-rank |
$p$-corank |
Angle rank |
Angle corank |
$\mathbb{F}_q$ points on curve |
$\mathbb{F}_{q^k}$ points on curve |
$\mathbb{F}_q$ points on variety |
$\mathbb{F}_{q^k}$ points on variety |
Jacobians |
Hyperelliptic Jacobians |
Num. twists |
Max. twist degree |
End. degree |
Number fields |
Galois groups |
Isogeny factors |
| 1.373.abm |
$1$ |
$\F_{373}$ |
$373$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 38 x + 373 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$336$ |
$[336, 138432, 51882768, 19356669696, 7220112399696, 2693103119711424, 1004527481221027344, 374688750717457333248, 139758904019495009776464, 52130071199260397504586432]$ |
$336$ |
$[336, 138432, 51882768, 19356669696, 7220112399696, 2693103119711424, 1004527481221027344, 374688750717457333248, 139758904019495009776464, 52130071199260397504586432]$ |
$4$ |
$0$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
| 1.373.abl |
$1$ |
$\F_{373}$ |
$373$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 37 x + 373 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$337$ |
$[337, 138507, 51885868, 19356768771, 7220115118117, 2693103186671424, 1004527482733308577, 374688750749044127523, 139758904020104584938364, 52130071199271130850102307]$ |
$337$ |
$[337, 138507, 51885868, 19356768771, 7220115118117, 2693103186671424, 1004527482733308577, 374688750749044127523, 139758904020104584938364, 52130071199271130850102307]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-123}) \) |
$C_2$ |
simple |
| 1.373.abk |
$1$ |
$\F_{373}$ |
$373$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 36 x + 373 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$338$ |
$[338, 138580, 51888746, 19356854400, 7220117237138, 2693103231631540, 1004527483543250186, 374688750760528089600, 139758904020189257232338, 52130071199269246898458900]$ |
$338$ |
$[338, 138580, 51888746, 19356854400, 7220117237138, 2693103231631540, 1004527483543250186, 374688750760528089600, 139758904020189257232338, 52130071199269246898458900]$ |
$5$ |
$0$ |
$4$ |
$4$ |
$1$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
simple |
| 1.373.abj |
$1$ |
$\F_{373}$ |
$373$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 35 x + 373 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$339$ |
$[339, 138651, 51891408, 19356927459, 7220118825519, 2693103258469824, 1004527483826936163, 374688750758732664675, 139758904019982476407824, 52130071199261945954432211]$ |
$339$ |
$[339, 138651, 51891408, 19356927459, 7220118825519, 2693103258469824, 1004527483826936163, 374688750758732664675, 139758904019982476407824, 52130071199261945954432211]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-267}) \) |
$C_2$ |
simple |
| 1.373.abi |
$1$ |
$\F_{373}$ |
$373$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 34 x + 373 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$340$ |
$[340, 138720, 51893860, 19356988800, 7220119947700, 2693103270651360, 1004527483732508740, 374688750748980979200, 139758904019649809872660, 52130071199253746143077600]$ |
$340$ |
$[340, 138720, 51893860, 19356988800, 7220119947700, 2693103270651360, 1004527483732508740, 374688750748980979200, 139758904019649809872660, 52130071199253746143077600]$ |
$12$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-21}) \) |
$C_2$ |
simple |
| 1.373.abh |
$1$ |
$\F_{373}$ |
$373$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 33 x + 373 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$341$ |
$[341, 138787, 51896108, 19357039251, 7220120663921, 2693103271253824, 1004527483383031949, 374688750735320513283, 139758904019302790368124, 52130071199247195991908907]$ |
$341$ |
$[341, 138787, 51896108, 19357039251, 7220120663921, 2693103271253824, 1004527483383031949, 374688750735320513283, 139758904019302790368124, 52130071199247195991908907]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-403}) \) |
$C_2$ |
simple |
| 1.373.abg |
$1$ |
$\F_{373}$ |
$373$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 32 x + 373 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$342$ |
$[342, 138852, 51898158, 19357079616, 7220121030342, 2693103262992324, 1004527482879178782, 374688750720725215488, 139758904019010759563574, 52130071199243448210439332]$ |
$342$ |
$[342, 138852, 51898158, 19357079616, 7220121030342, 2693103262992324, 1004527482879178782, 374688750720725215488, 139758904019010759563574, 52130071199243448210439332]$ |
$10$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-13}) \) |
$C_2$ |
simple |
| 1.373.abf |
$1$ |
$\F_{373}$ |
$373$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 31 x + 373 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$343$ |
$[343, 138915, 51900016, 19357110675, 7220121099163, 2693103248243520, 1004527482301746991, 374688750707276451075, 139758904018810906716208, 52130071199242714350300075]$ |
$343$ |
$[343, 138915, 51900016, 19357110675, 7220121099163, 2693103248243520, 1004527482301746991, 374688750707276451075, 139758904018810906716208, 52130071199242714350300075]$ |
$9$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-59}) \) |
$C_2$ |
simple |
| 1.373.abe |
$1$ |
$\F_{373}$ |
$373$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 30 x + 373 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$344$ |
$[344, 138976, 51901688, 19357133184, 7220120918744, 2693103229069024, 1004527481714008568, 374688750696324134400, 139758904018716689203544, 52130071199244618080890336]$ |
$344$ |
$[344, 138976, 51901688, 19357133184, 7220120918744, 2693103229069024, 1004527481714008568, 374688750696324134400, 139758904018716689203544, 52130071199244618080890336]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-37}) \) |
$C_2$ |
simple |
| 1.373.abd |
$1$ |
$\F_{373}$ |
$373$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 29 x + 373 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$345$ |
$[345, 139035, 51903180, 19357147875, 7220120533725, 2693103207238080, 1004527481163897945, 374688750688629355875, 139758904018724809761180, 52130071199248462988814675]$ |
$345$ |
$[345, 139035, 51903180, 19357147875, 7220120533725, 2693103207238080, 1004527481163897945, 374688750688629355875, 139758904018724809761180, 52130071199248462988814675]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-651}) \) |
$C_2$ |
simple |
| 1.373.abc |
$1$ |
$\F_{373}$ |
$373$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 28 x + 373 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$346$ |
$[346, 139092, 51904498, 19357155456, 7220119985146, 2693103184249524, 1004527480686043954, 374688750684489773568, 139758904018820913646234, 52130071199253429100602132]$ |
$346$ |
$[346, 139092, 51904498, 19357155456, 7220119985146, 2693103184249524, 1004527480686043954, 374688750684489773568, 139758904018820913646234, 52130071199253429100602132]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-177}) \) |
$C_2$ |
simple |
| 1.373.abb |
$1$ |
$\F_{373}$ |
$373$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 27 x + 373 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$347$ |
$[347, 139147, 51905648, 19357156611, 7220119310567, 2693103161353024, 1004527480303650587, 374688750683848999203, 139758904018984157697584, 52130071199258710733747107]$ |
$347$ |
$[347, 139147, 51905648, 19357156611, 7220119310567, 2693103161353024, 1004527480303650587, 374688750683848999203, 139758904018984157697584, 52130071199258710733747107]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-763}) \) |
$C_2$ |
simple |
| 1.373.aba |
$1$ |
$\F_{373}$ |
$373$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 26 x + 373 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$348$ |
$[348, 139200, 51906636, 19357152000, 7220118544188, 2693103139569600, 1004527480030231596, 374688750686391168000, 139758904019190792377628, 52130071199263606797336000]$ |
$348$ |
$[348, 139200, 51906636, 19357152000, 7220118544188, 2693103139569600, 1004527480030231596, 374688750686391168000, 139758904019190792377628, 52130071199263606797336000]$ |
$20$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-51}) \) |
$C_2$ |
simple |
| 1.373.az |
$1$ |
$\F_{373}$ |
$373$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 25 x + 373 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$349$ |
$[349, 139251, 51907468, 19357142259, 7220117716969, 2693103119711424, 1004527479871203973, 374688750691621841475, 139758904019416887356764, 52130071199267573286797211]$ |
$349$ |
$[349, 139251, 51907468, 19357142259, 7220117716969, 2693103119711424, 1004527479871203973, 374688750691621841475, 139758904019416887356764, 52130071199267573286797211]$ |
$7$ |
$0$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
| 1.373.ay |
$1$ |
$\F_{373}$ |
$373$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 24 x + 373 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$350$ |
$[350, 139300, 51908150, 19357128000, 7220116856750, 2693103102400900, 1004527479825345350, 374688750698936352000, 139758904019640321041150, 52130071199270246444006500]$ |
$350$ |
$[350, 139300, 51908150, 19357128000, 7220116856750, 2693103102400900, 1004527479825345350, 374688750698936352000, 139758904019640321041150, 52130071199270246444006500]$ |
$10$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-229}) \) |
$C_2$ |
simple |
| 1.373.ax |
$1$ |
$\F_{373}$ |
$373$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 23 x + 373 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$351$ |
$[351, 139347, 51908688, 19357109811, 7220115988371, 2693103088089024, 1004527479886120359, 374688750707676657603, 139758904019842144646544, 52130071199271443880466107]$ |
$351$ |
$[351, 139347, 51908688, 19357109811, 7220115988371, 2693103088089024, 1004527479886120359, 374688750707676657603, 139758904019842144646544, 52130071199271443880466107]$ |
$9$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-107}) \) |
$C_2$ |
simple |
| 1.373.aw |
$1$ |
$\F_{373}$ |
$373$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 22 x + 373 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$352$ |
$[352, 139392, 51909088, 19357088256, 7220115133792, 2693103077073024, 1004527480042880992, 374688750717177735168, 139758904020007421986144, 52130071199271149883925632]$ |
$352$ |
$[352, 139392, 51909088, 19357088256, 7220115133792, 2693103077073024, 1004527480042880992, 374688750717177735168, 139758904020007421986144, 52130071199271149883925632]$ |
$20$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-7}) \) |
$C_2$ |
simple |
| 1.373.av |
$1$ |
$\F_{373}$ |
$373$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 21 x + 373 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$353$ |
$[353, 139435, 51909356, 19357063875, 7220114312213, 2693103069513280, 1004527480281946001, 374688750726804499875, 139758904020125637068348, 52130071199269490143996675]$ |
$353$ |
$[353, 139435, 51909356, 19357063875, 7220114312213, 2693103069513280, 1004527480281946001, 374688750726804499875, 139758904020125637068348, 52130071199269490143996675]$ |
$5$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1051}) \) |
$C_2$ |
simple |
| 1.373.au |
$1$ |
$\F_{373}$ |
$373$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 20 x + 373 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$354$ |
$[354, 139476, 51909498, 19357037184, 7220113540194, 2693103065449524, 1004527480587564378, 374688750735980198400, 139758904020190752891234, 52130071199266700236402836]$ |
$354$ |
$[354, 139476, 51909498, 19357037184, 7220113540194, 2693103065449524, 1004527480587564378, 374688750735980198400, 139758904020190752891234, 52130071199266700236402836]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-273}) \) |
$C_2$ |
simple |
| 1.373.at |
$1$ |
$\F_{373}$ |
$373$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 19 x + 373 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$355$ |
$[355, 139515, 51909520, 19357008675, 7220112831775, 2693103064816320, 1004527480942767955, 374688750744207183075, 139758904020200996474320, 52130071199263091394873075]$ |
$355$ |
$[355, 139515, 51909520, 19357008675, 7220112831775, 2693103064816320, 1004527480942767955, 374688750744207183075, 139758904020200996474320, 52130071199263091394873075]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1131}) \) |
$C_2$ |
simple |
| 1.373.as |
$1$ |
$\F_{373}$ |
$373$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 18 x + 373 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$356$ |
$[356, 139552, 51909428, 19356978816, 7220112198596, 2693103067457824, 1004527481330118164, 374688750751080933888, 139758904020158437184804, 52130071199259016370700832]$ |
$356$ |
$[356, 139552, 51909428, 19356978816, 7220112198596, 2693103067457824, 1004527481330118164, 374688750751080933888, 139758904020158437184804, 52130071199259016370700832]$ |
$12$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-73}) \) |
$C_2$ |
simple |
| 1.373.ar |
$1$ |
$\F_{373}$ |
$373$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 17 x + 373 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$357$ |
$[357, 139587, 51909228, 19356948051, 7220111650017, 2693103073141824, 1004527481732351997, 374688750756298154883, 139758904020068417795004, 52130071199254837529024907]$ |
$357$ |
$[357, 139587, 51909228, 19356948051, 7220111650017, 2693103073141824, 1004527481732351997, 374688750756298154883, 139758904020068417795004, 52130071199254837529024907]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1203}) \) |
$C_2$ |
simple |
| 1.373.aq |
$1$ |
$\F_{373}$ |
$373$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 16 x + 373 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$358$ |
$[358, 139620, 51908926, 19356916800, 7220111193238, 2693103081573060, 1004527482132932206, 374688750759659731200, 139758904019938890450118, 52130071199250898754312100]$ |
$358$ |
$[358, 139620, 51908926, 19356916800, 7220111193238, 2693103081573060, 1004527482132932206, 374688750759659731200, 139758904019938890450118, 52130071199250898754312100]$ |
$12$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-309}) \) |
$C_2$ |
simple |
| 1.373.ap |
$1$ |
$\F_{373}$ |
$373$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 15 x + 373 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$359$ |
$[359, 139651, 51908528, 19356885459, 7220110833419, 2693103092405824, 1004527482516506783, 374688750761069292675, 139758904019779702830704, 52130071199247502231707211]$ |
$359$ |
$[359, 139651, 51908528, 19356885459, 7220110833419, 2693103092405824, 1004527482516506783, 374688750761069292675, 139758904019779702830704, 52130071199247502231707211]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1267}) \) |
$C_2$ |
simple |
| 1.373.ao |
$1$ |
$\F_{373}$ |
$373$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 14 x + 373 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$360$ |
$[360, 139680, 51908040, 19356854400, 7220110573800, 2693103105255840, 1004527482869282760, 374688750760528089600, 139758904019601873262440, 52130071199244890732234400]$ |
$360$ |
$[360, 139680, 51908040, 19356854400, 7220110573800, 2693103105255840, 1004527482869282760, 374688750760528089600, 139758904019601873262440, 52130071199244890732234400]$ |
$26$ |
$0$ |
$4$ |
$4$ |
$1$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
simple |
| 1.373.an |
$1$ |
$\F_{373}$ |
$373$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 13 x + 373 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$361$ |
$[361, 139707, 51907468, 19356823971, 7220110415821, 2693103119711424, 1004527483179319369, 374688750758126845923, 139758904019416887356764, 52130071199243235654656307]$ |
$361$ |
$[361, 139707, 51907468, 19356823971, 7220110415821, 2693103119711424, 1004527483179319369, 374688750758126845923, 139758904019416887356764, 52130071199243235654656307]$ |
$10$ |
$0$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
| 1.373.am |
$1$ |
$\F_{373}$ |
$373$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 12 x + 373 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$362$ |
$[362, 139732, 51906818, 19356794496, 7220110359242, 2693103135343924, 1004527483436745602, 374688750754035214848, 139758904019236042959914, 52130071199242630761494932]$ |
$362$ |
$[362, 139732, 51906818, 19356794496, 7220110359242, 2693103135343924, 1004527483436745602, 374688750754035214848, 139758904019236042959914, 52130071199242630761494932]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-337}) \) |
$C_2$ |
simple |
| 1.373.al |
$1$ |
$\F_{373}$ |
$373$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 11 x + 373 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$363$ |
$[363, 139755, 51906096, 19356766275, 7220110402263, 2693103151717440, 1004527483633907211, 374688750748489421475, 139758904019069864744688, 52130071199243091287662275]$ |
$363$ |
$[363, 139755, 51906096, 19356766275, 7220110402263, 2693103151717440, 1004527483633907211, 374688750748489421475, 139758904019069864744688, 52130071199243091287662275]$ |
$12$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1371}) \) |
$C_2$ |
simple |
| 1.373.ak |
$1$ |
$\F_{373}$ |
$373$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 10 x + 373 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$364$ |
$[364, 139776, 51905308, 19356739584, 7220110541644, 2693103168397824, 1004527483765448188, 374688750741778636800, 139758904018927604698924, 52130071199244557893710336]$ |
$364$ |
$[364, 139776, 51905308, 19356739584, 7220110541644, 2693103168397824, 1004527483765448188, 374688750741778636800, 139758904018927604698924, 52130071199244557893710336]$ |
$24$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-87}) \) |
$C_2$ |
simple |
| 1.373.aj |
$1$ |
$\F_{373}$ |
$373$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 9 x + 373 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$365$ |
$[365, 139795, 51904460, 19356714675, 7220110772825, 2693103184960960, 1004527483828331765, 374688750734230587075, 139758904018816840047260, 52130071199246904778260475]$ |
$365$ |
$[365, 139795, 51904460, 19356714675, 7220110772825, 2693103184960960, 1004527483828331765, 374688750734230587075, 139758904018816840047260, 52130071199246904778260475]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1411}) \) |
$C_2$ |
simple |
| 1.373.ai |
$1$ |
$\F_{373}$ |
$373$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 8 x + 373 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$366$ |
$[366, 139812, 51903558, 19356691776, 7220111090046, 2693103201000324, 1004527483821805974, 374688750726196862208, 139758904018743175788174, 52130071199249951152082532]$ |
$366$ |
$[366, 139812, 51903558, 19356691776, 7220111090046, 2693103201000324, 1004527483821805974, 374688750726196862208, 139758904018743175788174, 52130071199249951152082532]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-357}) \) |
$C_2$ |
simple |
| 1.373.ah |
$1$ |
$\F_{373}$ |
$373$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 7 x + 373 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$367$ |
$[367, 139827, 51902608, 19356671091, 7220111486467, 2693103216133824, 1004527483747318807, 374688750718038346563, 139758904018710055036624, 52130071199253475205935707]$ |
$367$ |
$[367, 139827, 51902608, 19356671091, 7220111486467, 2693103216133824, 1004527483747318807, 374688750718038346563, 139758904018710055036624, 52130071199253475205935707]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1443}) \) |
$C_2$ |
simple |
| 1.373.ag |
$1$ |
$\F_{373}$ |
$373$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 6 x + 373 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$368$ |
$[368, 139840, 51901616, 19356652800, 7220111954288, 2693103230009920, 1004527483608388016, 374688750710111155200, 139758904018718676733808, 52130071199257229672027200]$ |
$368$ |
$[368, 139840, 51901616, 19356652800, 7220111954288, 2693103230009920, 1004527483608388016, 374688750710111155200, 139758904018718676733808, 52130071199257229672027200]$ |
$20$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-91}) \) |
$C_2$ |
simple |
| 1.373.af |
$1$ |
$\F_{373}$ |
$373$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 5 x + 373 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$369$ |
$[369, 139851, 51900588, 19356637059, 7220112484869, 2693103242313024, 1004527483410430593, 374688750702753418275, 139758904018768017019644, 52130071199260958081162211]$ |
$369$ |
$[369, 139851, 51900588, 19356637059, 7220112484869, 2693103242313024, 1004527483410430593, 374688750702753418275, 139758904018768017019644, 52130071199260958081162211]$ |
$5$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-163}) \) |
$C_2$ |
simple |
| 1.373.ae |
$1$ |
$\F_{373}$ |
$373$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 4 x + 373 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$370$ |
$[370, 139860, 51899530, 19356624000, 7220113068850, 2693103252768180, 1004527483160556970, 374688750696273216000, 139758904018854947660530, 52130071199264410850721300]$ |
$370$ |
$[370, 139860, 51899530, 19356624000, 7220113068850, 2693103252768180, 1004527483160556970, 374688750696273216000, 139758904018854947660530, 52130071199264410850721300]$ |
$24$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-41}) \) |
$C_2$ |
simple |
| 1.373.ad |
$1$ |
$\F_{373}$ |
$373$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 3 x + 373 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$371$ |
$[371, 139867, 51898448, 19356613731, 7220113696271, 2693103261145024, 1004527482867334979, 374688750690937926243, 139758904018974442384784, 52130071199267360398879507]$ |
$371$ |
$[371, 139867, 51898448, 19356613731, 7220113696271, 2693103261145024, 1004527482867334979, 374688750690937926243, 139758904018974442384784, 52130071199267360398879507]$ |
$7$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1483}) \) |
$C_2$ |
simple |
| 1.373.ac |
$1$ |
$\F_{373}$ |
$373$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 2 x + 373 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$372$ |
$[372, 139872, 51897348, 19356606336, 7220114356692, 2693103267261024, 1004527482540528612, 374688750686965206528, 139758904019119859800884, 52130071199269614564347232]$ |
$372$ |
$[372, 139872, 51897348, 19356606336, 7220114356692, 2693103267261024, 1004527482540528612, 374688750686965206528, 139758904019119859800884, 52130071199269614564347232]$ |
$12$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-93}) \) |
$C_2$ |
simple |
| 1.373.ab |
$1$ |
$\F_{373}$ |
$373$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - x + 373 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$373$ |
$[373, 139875, 51896236, 19356601875, 7220115039313, 2693103270984000, 1004527482190816621, 374688750684515791875, 139758904019283289759228, 52130071199271027714736875]$ |
$373$ |
$[373, 139875, 51896236, 19356601875, 7220115039313, 2693103270984000, 1004527482190816621, 374688750684515791875, 139758904019283289759228, 52130071199271027714736875]$ |
$12$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1491}) \) |
$C_2$ |
simple |
| 1.373.a |
$1$ |
$\F_{373}$ |
$373$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 + 373 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$374$ |
$[374, 139876, 51895118, 19356600384, 7220115733094, 2693103272233924, 1004527481829495998, 374688750683688249600, 139758904019455948566614, 52130071199271509046812836]$ |
$374$ |
$[374, 139876, 51895118, 19356600384, 7220115733094, 2693103272233924, 1004527481829495998, 374688750683688249600, 139758904019455948566614, 52130071199271509046812836]$ |
$10$ |
$0$ |
$1$ |
$1$ |
$2$ |
\(\Q(\sqrt{-373}) \) |
$C_2$ |
simple |
| 1.373.b |
$1$ |
$\F_{373}$ |
$373$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + x + 373 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$375$ |
$[375, 139875, 51894000, 19356601875, 7220116426875, 2693103270984000, 1004527481468175375, 374688750684515791875, 139758904019628607374000, 52130071199271027714736875]$ |
$375$ |
$[375, 139875, 51894000, 19356601875, 7220116426875, 2693103270984000, 1004527481468175375, 374688750684515791875, 139758904019628607374000, 52130071199271027714736875]$ |
$12$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1491}) \) |
$C_2$ |
simple |
| 1.373.c |
$1$ |
$\F_{373}$ |
$373$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 2 x + 373 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$376$ |
$[376, 139872, 51892888, 19356606336, 7220117109496, 2693103267261024, 1004527481118463384, 374688750686965206528, 139758904019792037332344, 52130071199269614564347232]$ |
$376$ |
$[376, 139872, 51892888, 19356606336, 7220117109496, 2693103267261024, 1004527481118463384, 374688750686965206528, 139758904019792037332344, 52130071199269614564347232]$ |
$12$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-93}) \) |
$C_2$ |
simple |
| 1.373.d |
$1$ |
$\F_{373}$ |
$373$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 3 x + 373 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$377$ |
$[377, 139867, 51891788, 19356613731, 7220117769917, 2693103261145024, 1004527480791657017, 374688750690937926243, 139758904019937454748444, 52130071199267360398879507]$ |
$377$ |
$[377, 139867, 51891788, 19356613731, 7220117769917, 2693103261145024, 1004527480791657017, 374688750690937926243, 139758904019937454748444, 52130071199267360398879507]$ |
$7$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1483}) \) |
$C_2$ |
simple |
| 1.373.e |
$1$ |
$\F_{373}$ |
$373$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 4 x + 373 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$378$ |
$[378, 139860, 51890706, 19356624000, 7220118397338, 2693103252768180, 1004527480498435026, 374688750696273216000, 139758904020056949472698, 52130071199264410850721300]$ |
$378$ |
$[378, 139860, 51890706, 19356624000, 7220118397338, 2693103252768180, 1004527480498435026, 374688750696273216000, 139758904020056949472698, 52130071199264410850721300]$ |
$24$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-41}) \) |
$C_2$ |
simple |
| 1.373.f |
$1$ |
$\F_{373}$ |
$373$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 5 x + 373 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$379$ |
$[379, 139851, 51889648, 19356637059, 7220118981319, 2693103242313024, 1004527480248561403, 374688750702753418275, 139758904020143880113584, 52130071199260958081162211]$ |
$379$ |
$[379, 139851, 51889648, 19356637059, 7220118981319, 2693103242313024, 1004527480248561403, 374688750702753418275, 139758904020143880113584, 52130071199260958081162211]$ |
$5$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-163}) \) |
$C_2$ |
simple |
| 1.373.g |
$1$ |
$\F_{373}$ |
$373$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 6 x + 373 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$380$ |
$[380, 139840, 51888620, 19356652800, 7220119511900, 2693103230009920, 1004527480050603980, 374688750710111155200, 139758904020193220399420, 52130071199257229672027200]$ |
$380$ |
$[380, 139840, 51888620, 19356652800, 7220119511900, 2693103230009920, 1004527480050603980, 374688750710111155200, 139758904020193220399420, 52130071199257229672027200]$ |
$20$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-91}) \) |
$C_2$ |
simple |
| 1.373.h |
$1$ |
$\F_{373}$ |
$373$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 7 x + 373 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$381$ |
$[381, 139827, 51887628, 19356671091, 7220119979721, 2693103216133824, 1004527479911673189, 374688750718038346563, 139758904020201842096604, 52130071199253475205935707]$ |
$381$ |
$[381, 139827, 51887628, 19356671091, 7220119979721, 2693103216133824, 1004527479911673189, 374688750718038346563, 139758904020201842096604, 52130071199253475205935707]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1443}) \) |
$C_2$ |
simple |
| 1.373.i |
$1$ |
$\F_{373}$ |
$373$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 8 x + 373 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$382$ |
$[382, 139812, 51886678, 19356691776, 7220120376142, 2693103201000324, 1004527479837186022, 374688750726196862208, 139758904020168721345054, 52130071199249951152082532]$ |
$382$ |
$[382, 139812, 51886678, 19356691776, 7220120376142, 2693103201000324, 1004527479837186022, 374688750726196862208, 139758904020168721345054, 52130071199249951152082532]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-357}) \) |
$C_2$ |
simple |
| 1.373.j |
$1$ |
$\F_{373}$ |
$373$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 9 x + 373 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$383$ |
$[383, 139795, 51885776, 19356714675, 7220120693363, 2693103184960960, 1004527479830660231, 374688750734230587075, 139758904020095057085968, 52130071199246904778260475]$ |
$383$ |
$[383, 139795, 51885776, 19356714675, 7220120693363, 2693103184960960, 1004527479830660231, 374688750734230587075, 139758904020095057085968, 52130071199246904778260475]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1411}) \) |
$C_2$ |
simple |
| 1.373.k |
$1$ |
$\F_{373}$ |
$373$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 10 x + 373 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$384$ |
$[384, 139776, 51884928, 19356739584, 7220120924544, 2693103168397824, 1004527479893543808, 374688750741778636800, 139758904019984292434304, 52130071199244557893710336]$ |
$384$ |
$[384, 139776, 51884928, 19356739584, 7220120924544, 2693103168397824, 1004527479893543808, 374688750741778636800, 139758904019984292434304, 52130071199244557893710336]$ |
$24$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-87}) \) |
$C_2$ |
simple |
| 1.373.l |
$1$ |
$\F_{373}$ |
$373$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 11 x + 373 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$385$ |
$[385, 139755, 51884140, 19356766275, 7220121063925, 2693103151717440, 1004527480025084785, 374688750748489421475, 139758904019842032388540, 52130071199243091287662275]$ |
$385$ |
$[385, 139755, 51884140, 19356766275, 7220121063925, 2693103151717440, 1004527480025084785, 374688750748489421475, 139758904019842032388540, 52130071199243091287662275]$ |
$12$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1371}) \) |
$C_2$ |
simple |