| Label |
Dimension |
Base field |
Base char. |
Simple |
Geom. simple |
Primitive |
Ordinary |
Almost ordinary |
Supersingular |
Princ. polarizable |
Jacobian |
L-polynomial |
Newton slopes |
Newton elevation |
$p$-rank |
$p$-corank |
Angle rank |
Angle corank |
$\mathbb{F}_q$ points on curve |
$\mathbb{F}_{q^k}$ points on curve |
$\mathbb{F}_q$ points on variety |
$\mathbb{F}_{q^k}$ points on variety |
Jacobians |
Hyperelliptic Jacobians |
Num. twists |
Max. twist degree |
End. degree |
Number fields |
Galois groups |
Isogeny factors |
| 1.361.abm |
$1$ |
$\F_{19^{2}}$ |
$19$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$( 1 - 19 x )^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$324$ |
$[324, 129600, 47032164, 16983302400, 6131061305604, 2213314824974400, 799006683995140644, 288441413533654041600, 104127350297265866137284, 37589973457533696060840000]$ |
$324$ |
$[324, 129600, 47032164, 16983302400, 6131061305604, 2213314824974400, 799006683995140644, 288441413533654041600, 104127350297265866137284, 37589973457533696060840000]$ |
$2$ |
$0$ |
$3$ |
$4$ |
$1$ |
\(\Q\) |
Trivial |
simple |
| 1.361.abl |
$1$ |
$\F_{19^{2}}$ |
$19$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 37 x + 361 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$325$ |
$[325, 129675, 47035300, 16983405075, 6131064233125, 2213314901179200, 799006685851974925, 288441413576634720675, 104127350298219801213700, 37589973457554121008916875]$ |
$325$ |
$[325, 129675, 47035300, 16983405075, 6131064233125, 2213314901179200, 799006685851974925, 288441413576634720675, 104127350298219801213700, 37589973457554121008916875]$ |
$3$ |
$0$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
| 1.361.abk |
$1$ |
$\F_{19^{2}}$ |
$19$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 36 x + 361 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$326$ |
$[326, 129748, 47038214, 16983494208, 6131066547926, 2213314954359700, 799006686948716726, 288441413596850174208, 104127350298542620197734, 37589973457558136153935828]$ |
$326$ |
$[326, 129748, 47038214, 16983494208, 6131066547926, 2213314954359700, 799006686948716726, 288441413596850174208, 104127350298542620197734, 37589973457558136153935828]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-37}) \) |
$C_2$ |
simple |
| 1.361.abj |
$1$ |
$\F_{19^{2}}$ |
$19$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 35 x + 361 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$327$ |
$[327, 129819, 47040912, 16983570675, 6131068319127, 2213314988457024, 799006687467425967, 288441413601530031075, 104127350298489932145552, 37589973457553971265115579]$ |
$327$ |
$[327, 129819, 47040912, 16983570675, 6131068319127, 2213314988457024, 799006687467425967, 288441413601530031075, 104127350298489932145552, 37589973457553971265115579]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-219}) \) |
$C_2$ |
simple |
| 1.361.abi |
$1$ |
$\F_{19^{2}}$ |
$19$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 34 x + 361 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$328$ |
$[328, 129888, 47043400, 16983635328, 6131069611528, 2213315006997600, 799006687561857928, 288441413596363027968, 104127350298246255238600, 37589973457546972847788128]$ |
$328$ |
$[328, 129888, 47043400, 16983635328, 6131069611528, 2213315006997600, 799006687561857928, 288441413596363027968, 104127350298246255238600, 37589973457546972847788128]$ |
$9$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-2}) \) |
$C_2$ |
simple |
| 1.361.abh |
$1$ |
$\F_{19^{2}}$ |
$19$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 33 x + 361 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$329$ |
$[329, 129955, 47045684, 16983688995, 6131070485729, 2213315013118720, 799006687360336889, 288441413585724135555, 104127350297939179023764, 37589973457540344959153875]$ |
$329$ |
$[329, 129955, 47045684, 16983688995, 6131070485729, 2213315013118720, 799006687360336889, 288441413585724135555, 104127350297939179023764, 37589973457540344959153875]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-355}) \) |
$C_2$ |
simple |
| 1.361.abg |
$1$ |
$\F_{19^{2}}$ |
$19$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 32 x + 361 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$330$ |
$[330, 130020, 47047770, 16983732480, 6131070998250, 2213315009593380, 799006686968453370, 288441413572879057920, 104127350297651503521930, 37589973457535748478630500]$ |
$330$ |
$[330, 130020, 47047770, 16983732480, 6131070998250, 2213315009593380, 799006686968453370, 288441413572879057920, 104127350297651503521930, 37589973457535748478630500]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-105}) \) |
$C_2$ |
simple |
| 1.361.abf |
$1$ |
$\F_{19^{2}}$ |
$19$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 31 x + 361 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$331$ |
$[331, 130083, 47049664, 16983766563, 6131071201651, 2213314998854400, 799006686471590011, 288441413560167496323, 104127350297431554894784, 37589973457533778682936403]$ |
$331$ |
$[331, 130083, 47049664, 16983766563, 6131071201651, 2213314998854400, 799006686471590011, 288441413560167496323, 104127350297431554894784, 37589973457533778682936403]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-483}) \) |
$C_2$ |
simple |
| 1.361.abe |
$1$ |
$\F_{19^{2}}$ |
$19$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 30 x + 361 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$332$ |
$[332, 130144, 47051372, 16983792000, 6131071144652, 2213314983017824, 799006685937281132, 288441413549166528000, 104127350297301865021772, 37589973457534339022948704]$ |
$332$ |
$[332, 130144, 47051372, 16983792000, 6131071144652, 2213314983017824, 799006685937281132, 288441413549166528000, 104127350297301865021772, 37589973457534339022948704]$ |
$12$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-34}) \) |
$C_2$ |
simple |
| 1.361.abd |
$1$ |
$\F_{19^{2}}$ |
$19$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 29 x + 361 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$333$ |
$[333, 130203, 47052900, 16983809523, 6131070872253, 2213314963905600, 799006685417411013, 288441413540835410403, 104127350297266390364100, 37589973457536927167839803]$ |
$333$ |
$[333, 130203, 47052900, 16983809523, 6131070872253, 2213314963905600, 799006685417411013, 288441413540835410403, 104127350297266390364100, 37589973457536927167839803]$ |
$5$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-67}) \) |
$C_2$ |
simple |
| 1.361.abc |
$1$ |
$\F_{19^{2}}$ |
$19$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 28 x + 361 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$334$ |
$[334, 130260, 47054254, 16983819840, 6131070425854, 2213314943067540, 799006684950255934, 288441413535643080960, 104127350297316433880494, 37589973457540847668396500]$ |
$334$ |
$[334, 130260, 47054254, 16983819840, 6131070425854, 2213314943067540, 799006684950255934, 288441413535643080960, 104127350297316433880494, 37589973457540847668396500]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-165}) \) |
$C_2$ |
simple |
| 1.361.abb |
$1$ |
$\F_{19^{2}}$ |
$19$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 27 x + 361 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$335$ |
$[335, 130315, 47055440, 16983823635, 6131069843375, 2213314921802560, 799006684562375015, 288441413533679582115, 104127350297435422510160, 37589973457545363992132875]$ |
$335$ |
$[335, 130315, 47055440, 16983823635, 6131069843375, 2213314921802560, 799006684562375015, 288441413533679582115, 104127350297435422510160, 37589973457545363992132875]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-715}) \) |
$C_2$ |
simple |
| 1.361.aba |
$1$ |
$\F_{19^{2}}$ |
$19$ |
✓ |
✓ |
|
✓ |
|
|
✓ |
✓ |
$1 - 26 x + 361 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$336$ |
$[336, 130368, 47056464, 16983821568, 6131069159376, 2213314901179200, 799006684270354896, 288441413534752601088, 104127350297602681851984, 37589973457549801194193728]$ |
$336$ |
$[336, 130368, 47056464, 16983821568, 6131069159376, 2213314901179200, 799006684270354896, 288441413534752601088, 104127350297602681851984, 37589973457549801194193728]$ |
$16$ |
$0$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
| 1.361.az |
$1$ |
$\F_{19^{2}}$ |
$19$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 25 x + 361 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$337$ |
$[337, 130419, 47057332, 16983814275, 6131068405177, 2213314882055424, 799006684082413297, 288441413538470273475, 104127350297796339145492, 37589973457553609106480579]$ |
$337$ |
$[337, 130419, 47057332, 16983814275, 6131068405177, 2213314882055424, 799006684082413297, 288441413538470273475, 104127350297796339145492, 37589973457553609106480579]$ |
$10$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-91}) \) |
$C_2$ |
simple |
| 1.361.ay |
$1$ |
$\F_{19^{2}}$ |
$19$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 24 x + 361 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$338$ |
$[338, 130468, 47058050, 16983802368, 6131067608978, 2213314865097700, 799006683999866498, 288441413544311359488, 104127350297995475498450, 37589973457556394649288228]$ |
$338$ |
$[338, 130468, 47058050, 16983802368, 6131067608978, 2213314865097700, 799006683999866498, 288441413544311359488, 104127350297995475498450, 37589973457556394649288228]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-217}) \) |
$C_2$ |
simple |
| 1.361.ax |
$1$ |
$\F_{19^{2}}$ |
$19$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 23 x + 361 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$339$ |
$[339, 130515, 47058624, 16983786435, 6131066795979, 2213314850799360, 799006684018465779, 288441413551683861315, 104127350298181638508224, 37589973457557930691387875]$ |
$339$ |
$[339, 130515, 47058624, 16983786435, 6131066795979, 2213314850799360, 799006684018465779, 288441413551683861315, 104127350298181638508224, 37589973457557930691387875]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-915}) \) |
$C_2$ |
simple |
| 1.361.aw |
$1$ |
$\F_{19^{2}}$ |
$19$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 22 x + 361 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$340$ |
$[340, 130560, 47059060, 16983767040, 6131065988500, 2213314839498240, 799006684129607860, 288441413559973109760, 104127350298339816989140, 37589973457558147802304000]$ |
$340$ |
$[340, 130560, 47059060, 16983767040, 6131065988500, 2213314839498240, 799006684129607860, 288441413559973109760, 104127350298339816989140, 37589973457558147802304000]$ |
$16$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-15}) \) |
$C_2$ |
simple |
| 1.361.av |
$1$ |
$\F_{19^{2}}$ |
$19$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 21 x + 361 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$341$ |
$[341, 130603, 47059364, 16983744723, 6131065206101, 2213314831393600, 799006684321424381, 288441413568580308003, 104127350298458970446084, 37589973457557114250877803]$ |
$341$ |
$[341, 130603, 47059364, 16983744723, 6131065206101, 2213314831393600, 799006684321424381, 288441413568580308003, 104127350298458970446084, 37589973457557114250877803]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1003}) \) |
$C_2$ |
simple |
| 1.361.au |
$1$ |
$\F_{19^{2}}$ |
$19$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 20 x + 361 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$342$ |
$[342, 130644, 47059542, 16983720000, 6131064465702, 2213314826562324, 799006684579755462, 288441413576952480000, 104127350298532197225462, 37589973457555008703461204]$ |
$342$ |
$[342, 130644, 47059542, 16983720000, 6131064465702, 2213314826562324, 799006684579755462, 288441413576952480000, 104127350298532197225462, 37589973457555008703461204]$ |
$18$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-29}) \) |
$C_2$ |
simple |
| 1.361.as |
$1$ |
$\F_{19^{2}}$ |
$19$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 18 x + 361 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$344$ |
$[344, 130720, 47059544, 16983665280, 6131063166104, 2213314826507680, 799006685232934424, 288441413591135685120, 104127350298533034687704, 37589973457548661729348000]$ |
$344$ |
$[344, 130720, 47059544, 16983665280, 6131063166104, 2213314826507680, 799006685232934424, 288441413591135685120, 104127350298533034687704, 37589973457548661729348000]$ |
$12$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-70}) \) |
$C_2$ |
simple |
| 1.361.ar |
$1$ |
$\F_{19^{2}}$ |
$19$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 17 x + 361 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$345$ |
$[345, 130755, 47059380, 16983636195, 6131062628625, 2213314830961920, 799006685595244905, 288441413596236932355, 104127350298465447289620, 37589973457545049400173875]$ |
$345$ |
$[345, 130755, 47059380, 16983636195, 6131062628625, 2213314830961920, 799006685595244905, 288441413596236932355, 104127350298465447289620, 37589973457545049400173875]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1155}) \) |
$C_2$ |
simple |
| 1.361.aq |
$1$ |
$\F_{19^{2}}$ |
$19$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 16 x + 361 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$346$ |
$[346, 130788, 47059114, 16983606528, 6131062176826, 2213314838072100, 799006685960211466, 288441413599697261568, 104127350298360443863834, 37589973457541565960758628]$ |
$346$ |
$[346, 130788, 47059114, 16983606528, 6131062176826, 2213314838072100, 799006685960211466, 288441413599697261568, 104127350298360443863834, 37589973457541565960758628]$ |
$16$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-33}) \) |
$C_2$ |
simple |
| 1.361.ap |
$1$ |
$\F_{19^{2}}$ |
$19$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 15 x + 361 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$347$ |
$[347, 130819, 47058752, 16983576675, 6131061816227, 2213314847521024, 799006686313115627, 288441413601402435075, 104127350298226546970432, 37589973457538492737390579]$ |
$347$ |
$[347, 130819, 47058752, 16983576675, 6131061816227, 2213314847521024, 799006686313115627, 288441413601402435075, 104127350298226546970432, 37589973457538492737390579]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1219}) \) |
$C_2$ |
simple |
| 1.361.ao |
$1$ |
$\F_{19^{2}}$ |
$19$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 14 x + 361 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$348$ |
$[348, 130848, 47058300, 16983547008, 6131061550428, 2213314858951200, 799006686640636668, 288441413601331204608, 104127350298073533380700, 37589973457536060955895328]$ |
$348$ |
$[348, 130848, 47058300, 16983547008, 6131061550428, 2213314858951200, 799006686640636668, 288441413601331204608, 104127350298073533380700, 37589973457536060955895328]$ |
$12$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-78}) \) |
$C_2$ |
simple |
| 1.361.an |
$1$ |
$\F_{19^{2}}$ |
$19$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 13 x + 361 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$349$ |
$[349, 130875, 47057764, 16983517875, 6131061381229, 2213314871976000, 799006686931154869, 288441413599548235875, 104127350297911767679684, 37589973457534439361646875]$ |
$349$ |
$[349, 130875, 47057764, 16983517875, 6131061381229, 2213314871976000, 799006686931154869, 288441413599548235875, 104127350297911767679684, 37589973457534439361646875]$ |
$10$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-51}) \) |
$C_2$ |
simple |
| 1.361.am |
$1$ |
$\F_{19^{2}}$ |
$19$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 12 x + 361 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$350$ |
$[350, 130900, 47057150, 16983489600, 6131061308750, 2213314886190100, 799006687174979150, 288441413596194566400, 104127350297751576012350, 37589973457533727210172500]$ |
$350$ |
$[350, 130900, 47057150, 16983489600, 6131061308750, 2213314886190100, 799006687174979150, 288441413596194566400, 104127350297751576012350, 37589973457533727210172500]$ |
$14$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-13}) \) |
$C_2$ |
simple |
| 1.361.al |
$1$ |
$\F_{19^{2}}$ |
$19$ |
✓ |
✓ |
|
✓ |
|
|
✓ |
✓ |
$1 - 11 x + 361 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$351$ |
$[351, 130923, 47056464, 16983462483, 6131061331551, 2213314901179200, 799006687364504151, 288441413591476181283, 104127350297602681851984, 37589973457533952376956203]$ |
$351$ |
$[351, 130923, 47056464, 16983462483, 6131061331551, 2213314901179200, 799006687364504151, 288441413591476181283, 104127350297602681851984, 37589973457533952376956203]$ |
$10$ |
$0$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
| 1.361.ak |
$1$ |
$\F_{19^{2}}$ |
$19$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 10 x + 361 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$352$ |
$[352, 130944, 47055712, 16983436800, 6131061446752, 2213314916529024, 799006687494301792, 288441413585651251200, 104127350297473720589152, 37589973457535074123768704]$ |
$352$ |
$[352, 130944, 47055712, 16983436800, 6131061446752, 2213314916529024, 799006687494301792, 288441413585651251200, 104127350297473720589152, 37589973457535074123768704]$ |
$28$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-21}) \) |
$C_2$ |
simple |
| 1.361.aj |
$1$ |
$\F_{19^{2}}$ |
$19$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 9 x + 361 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$353$ |
$[353, 130963, 47054900, 16983412803, 6131061650153, 2213314931833600, 799006687561152353, 288441413579016536643, 104127350297371845022100, 37589973457536989896564003]$ |
$353$ |
$[353, 130963, 47054900, 16983412803, 6131061650153, 2213314931833600, 799006687561152353, 288441413579016536643, 104127350297371845022100, 37589973457536989896564003]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1363}) \) |
$C_2$ |
simple |
| 1.361.ai |
$1$ |
$\F_{19^{2}}$ |
$19$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 8 x + 361 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$354$ |
$[354, 130980, 47054034, 16983390720, 6131061936354, 2213314946702820, 799006687564020114, 288441413571893422080, 104127350297302429474914, 37589973457539545413054500]$ |
$354$ |
$[354, 130980, 47054034, 16983390720, 6131061936354, 2213314946702820, 799006687564020114, 288441413571893422080, 104127350297302429474914, 37589973457539545413054500]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-345}) \) |
$C_2$ |
simple |
| 1.361.ah |
$1$ |
$\F_{19^{2}}$ |
$19$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 7 x + 361 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$355$ |
$[355, 130995, 47053120, 16983370755, 6131062298875, 2213314960769280, 799006687503978595, 288441413564614003395, 104127350297268876278080, 37589973457542547222879875]$ |
$355$ |
$[355, 130995, 47053120, 16983370755, 6131062298875, 2213314960769280, 799006687503978595, 288441413564614003395, 104127350297268876278080, 37589973457542547222879875]$ |
$12$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-155}) \) |
$C_2$ |
simple |
| 1.361.ag |
$1$ |
$\F_{19^{2}}$ |
$19$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 6 x + 361 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$356$ |
$[356, 131008, 47052164, 16983353088, 6131062730276, 2213314973694400, 799006687384090436, 288441413557507611648, 104127350297272524717284, 37589973457545776886190528]$ |
$356$ |
$[356, 131008, 47052164, 16983353088, 6131062730276, 2213314973694400, 799006687384090436, 288441413557507611648, 104127350297272524717284, 37589973457545776886190528]$ |
$14$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-22}) \) |
$C_2$ |
simple |
| 1.361.af |
$1$ |
$\F_{19^{2}}$ |
$19$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 5 x + 361 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$357$ |
$[357, 131019, 47051172, 16983337875, 6131063222277, 2213314985173824, 799006687209246957, 288441413550888115875, 104127350297312659290372, 37589973457549005913845579]$ |
$357$ |
$[357, 131019, 47051172, 16983337875, 6131063222277, 2213314985173824, 799006687209246957, 288441413550888115875, 104127350297312659290372, 37589973457549005913845579]$ |
$12$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1419}) \) |
$C_2$ |
simple |
| 1.361.ae |
$1$ |
$\F_{19^{2}}$ |
$19$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 4 x + 361 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$358$ |
$[358, 131028, 47050150, 16983325248, 6131063765878, 2213314994942100, 799006686985972438, 288441413545042307328, 104127350297386611209350, 37589973457552010640649428]$ |
$358$ |
$[358, 131028, 47050150, 16983325248, 6131063765878, 2213314994942100, 799006686985972438, 288441413545042307328, 104127350297386611209350, 37589973457552010640649428]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-357}) \) |
$C_2$ |
simple |
| 1.361.ad |
$1$ |
$\F_{19^{2}}$ |
$19$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 3 x + 361 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$359$ |
$[359, 131035, 47049104, 16983315315, 6131064351479, 2213315002776640, 799006686722198159, 288441413540219627235, 104127350297489944544144, 37589973457554586258490875]$ |
$359$ |
$[359, 131035, 47049104, 16983315315, 6131064351479, 2213315002776640, 799006686722198159, 288441413540219627235, 104127350297489944544144, 37589973457554586258490875]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1435}) \) |
$C_2$ |
simple |
| 1.361.ac |
$1$ |
$\F_{19^{2}}$ |
$19$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 2 x + 361 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$360$ |
$[360, 131040, 47048040, 16983308160, 6131064969000, 2213315008500960, 799006686427011240, 288441413536623459840, 104127350297616716227560, 37589973457556559315276000]$ |
$360$ |
$[360, 131040, 47048040, 16983308160, 6131064969000, 2213315008500960, 799006686427011240, 288441413536623459840, 104127350297616716227560, 37589973457556559315276000]$ |
$30$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-10}) \) |
$C_2$ |
simple |
| 1.361.ab |
$1$ |
$\F_{19^{2}}$ |
$19$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - x + 361 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$361$ |
$[361, 131043, 47046964, 16983303843, 6131065608001, 2213315011987200, 799006686110383321, 288441413534404172163, 104127350297759797326484, 37589973457557798084531603]$ |
$361$ |
$[361, 131043, 47046964, 16983303843, 6131065608001, 2213315011987200, 799006686110383321, 288441413534404172163, 104127350297759797326484, 37589973457557798084531603]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1443}) \) |
$C_2$ |
simple |
| 1.361.a |
$1$ |
$\F_{19^{2}}$ |
$19$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 + 361 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$362$ |
$[362, 131044, 47045882, 16983302400, 6131066257802, 2213315013157924, 799006685782884122, 288441413533654041600, 104127350297911241532842, 37589973457558220325871204]$ |
$362$ |
$[362, 131044, 47045882, 16983302400, 6131066257802, 2213315013157924, 799006685782884122, 288441413533654041600, 104127350297911241532842, 37589973457558220325871204]$ |
$2$ |
$0$ |
$3$ |
$4$ |
$2$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
simple |
| 1.361.b |
$1$ |
$\F_{19^{2}}$ |
$19$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + x + 361 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$363$ |
$[363, 131043, 47044800, 16983303843, 6131066907603, 2213315011987200, 799006685455384923, 288441413534404172163, 104127350298062685739200, 37589973457557798084531603]$ |
$363$ |
$[363, 131043, 47044800, 16983303843, 6131066907603, 2213315011987200, 799006685455384923, 288441413534404172163, 104127350298062685739200, 37589973457557798084531603]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1443}) \) |
$C_2$ |
simple |
| 1.361.c |
$1$ |
$\F_{19^{2}}$ |
$19$ |
✓ |
✓ |
|
✓ |
|
|
✓ |
✓ |
$1 + 2 x + 361 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$364$ |
$[364, 131040, 47043724, 16983308160, 6131067546604, 2213315008500960, 799006685138757004, 288441413536623459840, 104127350298205766838124, 37589973457556559315276000]$ |
$364$ |
$[364, 131040, 47043724, 16983308160, 6131067546604, 2213315008500960, 799006685138757004, 288441413536623459840, 104127350298205766838124, 37589973457556559315276000]$ |
$30$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-10}) \) |
$C_2$ |
simple |
| 1.361.d |
$1$ |
$\F_{19^{2}}$ |
$19$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 3 x + 361 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$365$ |
$[365, 131035, 47042660, 16983315315, 6131068164125, 2213315002776640, 799006684843570085, 288441413540219627235, 104127350298332538521540, 37589973457554586258490875]$ |
$365$ |
$[365, 131035, 47042660, 16983315315, 6131068164125, 2213315002776640, 799006684843570085, 288441413540219627235, 104127350298332538521540, 37589973457554586258490875]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1435}) \) |
$C_2$ |
simple |
| 1.361.e |
$1$ |
$\F_{19^{2}}$ |
$19$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 4 x + 361 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$366$ |
$[366, 131028, 47041614, 16983325248, 6131068749726, 2213314994942100, 799006684579795806, 288441413545042307328, 104127350298435871856334, 37589973457552010640649428]$ |
$366$ |
$[366, 131028, 47041614, 16983325248, 6131068749726, 2213314994942100, 799006684579795806, 288441413545042307328, 104127350298435871856334, 37589973457552010640649428]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-357}) \) |
$C_2$ |
simple |
| 1.361.f |
$1$ |
$\F_{19^{2}}$ |
$19$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 5 x + 361 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$367$ |
$[367, 131019, 47040592, 16983337875, 6131069293327, 2213314985173824, 799006684356521287, 288441413550888115875, 104127350298509823775312, 37589973457549005913845579]$ |
$367$ |
$[367, 131019, 47040592, 16983337875, 6131069293327, 2213314985173824, 799006684356521287, 288441413550888115875, 104127350298509823775312, 37589973457549005913845579]$ |
$12$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1419}) \) |
$C_2$ |
simple |
| 1.361.g |
$1$ |
$\F_{19^{2}}$ |
$19$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 6 x + 361 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$368$ |
$[368, 131008, 47039600, 16983353088, 6131069785328, 2213314973694400, 799006684181677808, 288441413557507611648, 104127350298549958348400, 37589973457545776886190528]$ |
$368$ |
$[368, 131008, 47039600, 16983353088, 6131069785328, 2213314973694400, 799006684181677808, 288441413557507611648, 104127350298549958348400, 37589973457545776886190528]$ |
$14$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-22}) \) |
$C_2$ |
simple |
| 1.361.h |
$1$ |
$\F_{19^{2}}$ |
$19$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 7 x + 361 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$369$ |
$[369, 130995, 47038644, 16983370755, 6131070216729, 2213314960769280, 799006684061789649, 288441413564614003395, 104127350298553606787604, 37589973457542547222879875]$ |
$369$ |
$[369, 130995, 47038644, 16983370755, 6131070216729, 2213314960769280, 799006684061789649, 288441413564614003395, 104127350298553606787604, 37589973457542547222879875]$ |
$12$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-155}) \) |
$C_2$ |
simple |
| 1.361.i |
$1$ |
$\F_{19^{2}}$ |
$19$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 8 x + 361 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$370$ |
$[370, 130980, 47037730, 16983390720, 6131070579250, 2213314946702820, 799006684001748130, 288441413571893422080, 104127350298520053590770, 37589973457539545413054500]$ |
$370$ |
$[370, 130980, 47037730, 16983390720, 6131070579250, 2213314946702820, 799006684001748130, 288441413571893422080, 104127350298520053590770, 37589973457539545413054500]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-345}) \) |
$C_2$ |
simple |
| 1.361.j |
$1$ |
$\F_{19^{2}}$ |
$19$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 9 x + 361 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$371$ |
$[371, 130963, 47036864, 16983412803, 6131070865451, 2213314931833600, 799006684004615891, 288441413579016536643, 104127350298450638043584, 37589973457536989896564003]$ |
$371$ |
$[371, 130963, 47036864, 16983412803, 6131070865451, 2213314931833600, 799006684004615891, 288441413579016536643, 104127350298450638043584, 37589973457536989896564003]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1363}) \) |
$C_2$ |
simple |
| 1.361.k |
$1$ |
$\F_{19^{2}}$ |
$19$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 10 x + 361 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$372$ |
$[372, 130944, 47036052, 16983436800, 6131071068852, 2213314916529024, 799006684071466452, 288441413585651251200, 104127350298348762476532, 37589973457535074123768704]$ |
$372$ |
$[372, 130944, 47036052, 16983436800, 6131071068852, 2213314916529024, 799006684071466452, 288441413585651251200, 104127350298348762476532, 37589973457535074123768704]$ |
$28$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-21}) \) |
$C_2$ |
simple |
| 1.361.l |
$1$ |
$\F_{19^{2}}$ |
$19$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 11 x + 361 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$373$ |
$[373, 130923, 47035300, 16983462483, 6131071184053, 2213314901179200, 799006684201264093, 288441413591476181283, 104127350298219801213700, 37589973457533952376956203]$ |
$373$ |
$[373, 130923, 47035300, 16983462483, 6131071184053, 2213314901179200, 799006684201264093, 288441413591476181283, 104127350298219801213700, 37589973457533952376956203]$ |
$10$ |
$0$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
| 1.361.m |
$1$ |
$\F_{19^{2}}$ |
$19$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 12 x + 361 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$374$ |
$[374, 130900, 47034614, 16983489600, 6131071206854, 2213314886190100, 799006684390789094, 288441413596194566400, 104127350298070907053334, 37589973457533727210172500]$ |
$374$ |
$[374, 130900, 47034614, 16983489600, 6131071206854, 2213314886190100, 799006684390789094, 288441413596194566400, 104127350298070907053334, 37589973457533727210172500]$ |
$14$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-13}) \) |
$C_2$ |
simple |