Learn more

Refine search


Results (1-50 of 75 matches)

Next   displayed columns for results
Label Dimension Base field L-polynomial $p$-rank Number fields Galois groups Isogeny factors
1.361.abm $1$ $\F_{19^{2}}$ $( 1 - 19 x )^{2}$ $0$ \(\Q\) Trivial
1.361.abl $1$ $\F_{19^{2}}$ $1 - 37 x + 361 x^{2}$ $1$ \(\Q(\sqrt{-3}) \) $C_2$
1.361.abk $1$ $\F_{19^{2}}$ $1 - 36 x + 361 x^{2}$ $1$ \(\Q(\sqrt{-37}) \) $C_2$
1.361.abj $1$ $\F_{19^{2}}$ $1 - 35 x + 361 x^{2}$ $1$ \(\Q(\sqrt{-219}) \) $C_2$
1.361.abi $1$ $\F_{19^{2}}$ $1 - 34 x + 361 x^{2}$ $1$ \(\Q(\sqrt{-2}) \) $C_2$
1.361.abh $1$ $\F_{19^{2}}$ $1 - 33 x + 361 x^{2}$ $1$ \(\Q(\sqrt{-355}) \) $C_2$
1.361.abg $1$ $\F_{19^{2}}$ $1 - 32 x + 361 x^{2}$ $1$ \(\Q(\sqrt{-105}) \) $C_2$
1.361.abf $1$ $\F_{19^{2}}$ $1 - 31 x + 361 x^{2}$ $1$ \(\Q(\sqrt{-483}) \) $C_2$
1.361.abe $1$ $\F_{19^{2}}$ $1 - 30 x + 361 x^{2}$ $1$ \(\Q(\sqrt{-34}) \) $C_2$
1.361.abd $1$ $\F_{19^{2}}$ $1 - 29 x + 361 x^{2}$ $1$ \(\Q(\sqrt{-67}) \) $C_2$
1.361.abc $1$ $\F_{19^{2}}$ $1 - 28 x + 361 x^{2}$ $1$ \(\Q(\sqrt{-165}) \) $C_2$
1.361.abb $1$ $\F_{19^{2}}$ $1 - 27 x + 361 x^{2}$ $1$ \(\Q(\sqrt{-715}) \) $C_2$
1.361.aba $1$ $\F_{19^{2}}$ $1 - 26 x + 361 x^{2}$ $1$ \(\Q(\sqrt{-3}) \) $C_2$
1.361.az $1$ $\F_{19^{2}}$ $1 - 25 x + 361 x^{2}$ $1$ \(\Q(\sqrt{-91}) \) $C_2$
1.361.ay $1$ $\F_{19^{2}}$ $1 - 24 x + 361 x^{2}$ $1$ \(\Q(\sqrt{-217}) \) $C_2$
1.361.ax $1$ $\F_{19^{2}}$ $1 - 23 x + 361 x^{2}$ $1$ \(\Q(\sqrt{-915}) \) $C_2$
1.361.aw $1$ $\F_{19^{2}}$ $1 - 22 x + 361 x^{2}$ $1$ \(\Q(\sqrt{-15}) \) $C_2$
1.361.av $1$ $\F_{19^{2}}$ $1 - 21 x + 361 x^{2}$ $1$ \(\Q(\sqrt{-1003}) \) $C_2$
1.361.au $1$ $\F_{19^{2}}$ $1 - 20 x + 361 x^{2}$ $1$ \(\Q(\sqrt{-29}) \) $C_2$
1.361.as $1$ $\F_{19^{2}}$ $1 - 18 x + 361 x^{2}$ $1$ \(\Q(\sqrt{-70}) \) $C_2$
1.361.ar $1$ $\F_{19^{2}}$ $1 - 17 x + 361 x^{2}$ $1$ \(\Q(\sqrt{-1155}) \) $C_2$
1.361.aq $1$ $\F_{19^{2}}$ $1 - 16 x + 361 x^{2}$ $1$ \(\Q(\sqrt{-33}) \) $C_2$
1.361.ap $1$ $\F_{19^{2}}$ $1 - 15 x + 361 x^{2}$ $1$ \(\Q(\sqrt{-1219}) \) $C_2$
1.361.ao $1$ $\F_{19^{2}}$ $1 - 14 x + 361 x^{2}$ $1$ \(\Q(\sqrt{-78}) \) $C_2$
1.361.an $1$ $\F_{19^{2}}$ $1 - 13 x + 361 x^{2}$ $1$ \(\Q(\sqrt{-51}) \) $C_2$
1.361.am $1$ $\F_{19^{2}}$ $1 - 12 x + 361 x^{2}$ $1$ \(\Q(\sqrt{-13}) \) $C_2$
1.361.al $1$ $\F_{19^{2}}$ $1 - 11 x + 361 x^{2}$ $1$ \(\Q(\sqrt{-3}) \) $C_2$
1.361.ak $1$ $\F_{19^{2}}$ $1 - 10 x + 361 x^{2}$ $1$ \(\Q(\sqrt{-21}) \) $C_2$
1.361.aj $1$ $\F_{19^{2}}$ $1 - 9 x + 361 x^{2}$ $1$ \(\Q(\sqrt{-1363}) \) $C_2$
1.361.ai $1$ $\F_{19^{2}}$ $1 - 8 x + 361 x^{2}$ $1$ \(\Q(\sqrt{-345}) \) $C_2$
1.361.ah $1$ $\F_{19^{2}}$ $1 - 7 x + 361 x^{2}$ $1$ \(\Q(\sqrt{-155}) \) $C_2$
1.361.ag $1$ $\F_{19^{2}}$ $1 - 6 x + 361 x^{2}$ $1$ \(\Q(\sqrt{-22}) \) $C_2$
1.361.af $1$ $\F_{19^{2}}$ $1 - 5 x + 361 x^{2}$ $1$ \(\Q(\sqrt{-1419}) \) $C_2$
1.361.ae $1$ $\F_{19^{2}}$ $1 - 4 x + 361 x^{2}$ $1$ \(\Q(\sqrt{-357}) \) $C_2$
1.361.ad $1$ $\F_{19^{2}}$ $1 - 3 x + 361 x^{2}$ $1$ \(\Q(\sqrt{-1435}) \) $C_2$
1.361.ac $1$ $\F_{19^{2}}$ $1 - 2 x + 361 x^{2}$ $1$ \(\Q(\sqrt{-10}) \) $C_2$
1.361.ab $1$ $\F_{19^{2}}$ $1 - x + 361 x^{2}$ $1$ \(\Q(\sqrt{-1443}) \) $C_2$
1.361.a $1$ $\F_{19^{2}}$ $1 + 361 x^{2}$ $0$ \(\Q(\sqrt{-1}) \) $C_2$
1.361.b $1$ $\F_{19^{2}}$ $1 + x + 361 x^{2}$ $1$ \(\Q(\sqrt{-1443}) \) $C_2$
1.361.c $1$ $\F_{19^{2}}$ $1 + 2 x + 361 x^{2}$ $1$ \(\Q(\sqrt{-10}) \) $C_2$
1.361.d $1$ $\F_{19^{2}}$ $1 + 3 x + 361 x^{2}$ $1$ \(\Q(\sqrt{-1435}) \) $C_2$
1.361.e $1$ $\F_{19^{2}}$ $1 + 4 x + 361 x^{2}$ $1$ \(\Q(\sqrt{-357}) \) $C_2$
1.361.f $1$ $\F_{19^{2}}$ $1 + 5 x + 361 x^{2}$ $1$ \(\Q(\sqrt{-1419}) \) $C_2$
1.361.g $1$ $\F_{19^{2}}$ $1 + 6 x + 361 x^{2}$ $1$ \(\Q(\sqrt{-22}) \) $C_2$
1.361.h $1$ $\F_{19^{2}}$ $1 + 7 x + 361 x^{2}$ $1$ \(\Q(\sqrt{-155}) \) $C_2$
1.361.i $1$ $\F_{19^{2}}$ $1 + 8 x + 361 x^{2}$ $1$ \(\Q(\sqrt{-345}) \) $C_2$
1.361.j $1$ $\F_{19^{2}}$ $1 + 9 x + 361 x^{2}$ $1$ \(\Q(\sqrt{-1363}) \) $C_2$
1.361.k $1$ $\F_{19^{2}}$ $1 + 10 x + 361 x^{2}$ $1$ \(\Q(\sqrt{-21}) \) $C_2$
1.361.l $1$ $\F_{19^{2}}$ $1 + 11 x + 361 x^{2}$ $1$ \(\Q(\sqrt{-3}) \) $C_2$
1.361.m $1$ $\F_{19^{2}}$ $1 + 12 x + 361 x^{2}$ $1$ \(\Q(\sqrt{-13}) \) $C_2$
Next   displayed columns for results