| Label |
Dimension |
Base field |
Base char. |
Simple |
Geom. simple |
Primitive |
Ordinary |
Almost ordinary |
Supersingular |
Princ. polarizable |
Jacobian |
L-polynomial |
Newton slopes |
Newton elevation |
$p$-rank |
$p$-corank |
Angle rank |
Angle corank |
$\mathbb{F}_q$ points on curve |
$\mathbb{F}_{q^k}$ points on curve |
$\mathbb{F}_q$ points on variety |
$\mathbb{F}_{q^k}$ points on variety |
Jacobians |
Hyperelliptic Jacobians |
Num. twists |
Max. twist degree |
End. degree |
Number fields |
Galois groups |
Isogeny factors |
| 1.349.abl |
$1$ |
$\F_{349}$ |
$349$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 37 x + 349 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$313$ |
$[313, 121131, 42496636, 14835276963, 5177580289093, 1806976681159104, 630634880702724217, 220091573662511218083, 76811959212591661531564, 26807373765252630089212851]$ |
$313$ |
$[313, 121131, 42496636, 14835276963, 5177580289093, 1806976681159104, 630634880702724217, 220091573662511218083, 76811959212591661531564, 26807373765252630089212851]$ |
$2$ |
$0$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
| 1.349.abk |
$1$ |
$\F_{349}$ |
$349$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 36 x + 349 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$314$ |
$[314, 121204, 42499586, 14835369600, 5177582801114, 1806976742749204, 630634882100198786, 220091573692214438400, 76811959213186287547514, 26807373765263841974958004]$ |
$314$ |
$[314, 121204, 42499586, 14835369600, 5177582801114, 1806976742749204, 630634882100198786, 220091573692214438400, 76811959213186287547514, 26807373765263841974958004]$ |
$3$ |
$0$ |
$4$ |
$4$ |
$1$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
simple |
| 1.349.abj |
$1$ |
$\F_{349}$ |
$349$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 35 x + 349 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$315$ |
$[315, 121275, 42502320, 14835449475, 5177584756575, 1806976784289600, 630634882866992955, 220091573704046242275, 76811959213316115006960, 26807373765263833783531875]$ |
$315$ |
$[315, 121275, 42502320, 14835449475, 5177584756575, 1806976784289600, 630634882866992955, 220091573704046242275, 76811959213316115006960, 26807373765263833783531875]$ |
$5$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-19}) \) |
$C_2$ |
simple |
| 1.349.abi |
$1$ |
$\F_{349}$ |
$349$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 34 x + 349 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$316$ |
$[316, 121344, 42504844, 14835517440, 5177586220636, 1806976809368064, 630634883162499244, 220091573704065884160, 76811959213185144821116, 26807373765258821261781504]$ |
$316$ |
$[316, 121344, 42504844, 14835517440, 5177586220636, 1806976809368064, 630634883162499244, 220091573704065884160, 76811959213185144821116, 26807373765258821261781504]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-15}) \) |
$C_2$ |
simple |
| 1.349.abh |
$1$ |
$\F_{349}$ |
$349$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 33 x + 349 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$317$ |
$[317, 121411, 42507164, 14835574323, 5177587254257, 1806976821181504, 630634883120326373, 220091573696980594563, 76811959212937522639436, 26807373765252700785627451]$ |
$317$ |
$[317, 121411, 42507164, 14835574323, 5177587254257, 1806976821181504, 630634883120326373, 220091573696980594563, 76811959212937522639436, 26807373765252700785627451]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-307}) \) |
$C_2$ |
simple |
| 1.349.abg |
$1$ |
$\F_{349}$ |
$349$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 32 x + 349 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$318$ |
$[318, 121476, 42509286, 14835620928, 5177587914318, 1806976822560804, 630634882851006582, 220091573686352464128, 76811959212669974405214, 26807373765247674371607876]$ |
$318$ |
$[318, 121476, 42509286, 14835620928, 5177587914318, 1806976822560804, 630634882851006582, 220091573686352464128, 76811959212669974405214, 26807373765247674371607876]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-93}) \) |
$C_2$ |
simple |
| 1.349.abf |
$1$ |
$\F_{349}$ |
$349$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 31 x + 349 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$319$ |
$[319, 121539, 42511216, 14835658035, 5177588253739, 1806976815994944, 630634882444531591, 220091573674784022915, 76811959212442399962544, 26807373765244750410056379]$ |
$319$ |
$[319, 121539, 42511216, 14835658035, 5177588253739, 1806976815994944, 630634882444531591, 220091573674784022915, 76811959212442399962544, 26807373765244750410056379]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-435}) \) |
$C_2$ |
simple |
| 1.349.abe |
$1$ |
$\F_{349}$ |
$349$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 30 x + 349 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$320$ |
$[320, 121600, 42512960, 14835686400, 5177588321600, 1806976803654400, 630634881972722240, 220091573664083865600, 76811959212286812610880, 26807373765244138179040000]$ |
$320$ |
$[320, 121600, 42512960, 14835686400, 5177588321600, 1806976803654400, 630634881972722240, 220091573664083865600, 76811959212286812610880, 26807373765244138179040000]$ |
$12$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-31}) \) |
$C_2$ |
simple |
| 1.349.abd |
$1$ |
$\F_{349}$ |
$349$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 29 x + 349 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$321$ |
$[321, 121659, 42514524, 14835706755, 5177588163261, 1806976787413824, 630634881491436849, 220091573655413632995, 76811959212214800528396, 26807373765245552361809379]$ |
$321$ |
$[321, 121659, 42514524, 14835706755, 5177588163261, 1806976787413824, 630634881491436849, 220091573655413632995, 76811959212214800528396, 26807373765245552361809379]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-555}) \) |
$C_2$ |
simple |
| 1.349.abc |
$1$ |
$\F_{349}$ |
$349$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 28 x + 349 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$322$ |
$[322, 121716, 42515914, 14835719808, 5177587820482, 1806976768874004, 630634881042623338, 220091573649417619968, 76811959212223674373186, 26807373765248442072074676]$ |
$322$ |
$[322, 121716, 42515914, 14835719808, 5177587820482, 1806976768874004, 630634881042623338, 220091573649417619968, 76811959212223674373186, 26807373765248442072074676]$ |
$12$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-17}) \) |
$C_2$ |
simple |
| 1.349.abb |
$1$ |
$\F_{349}$ |
$349$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 27 x + 349 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$323$ |
$[323, 121771, 42517136, 14835726243, 5177587331543, 1806976749383104, 630634880656220147, 220091573646336239523, 76811959212301454122064, 26807373765252157287289651]$ |
$323$ |
$[323, 121771, 42517136, 14835726243, 5177587331543, 1806976749383104, 630634880656220147, 220091573646336239523, 76811959212301454122064, 26807373765252157287289651]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-667}) \) |
$C_2$ |
simple |
| 1.349.aba |
$1$ |
$\F_{349}$ |
$349$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 26 x + 349 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$324$ |
$[324, 121824, 42518196, 14835726720, 5177586731364, 1806976730057184, 630634880351910996, 220091573646104532480, 76811959212430837320324, 26807373765256064096673504]$ |
$324$ |
$[324, 121824, 42518196, 14835726720, 5177586731364, 1806976730057184, 630634880351910996, 220091573646104532480, 76811959212430837320324, 26807373765256064096673504]$ |
$18$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-5}) \) |
$C_2$ |
simple |
| 1.349.az |
$1$ |
$\F_{349}$ |
$349$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 25 x + 349 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$325$ |
$[325, 121875, 42519100, 14835721875, 5177586051625, 1806976711800000, 630634880140738525, 220091573648436871875, 76811959212592280392300, 26807373765259618784296875]$ |
$325$ |
$[325, 121875, 42519100, 14835721875, 5177586051625, 1806976711800000, 630634880140738525, 220091573648436871875, 76811959212592280392300, 26807373765259618784296875]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-771}) \) |
$C_2$ |
simple |
| 1.349.ay |
$1$ |
$\F_{349}$ |
$349$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 24 x + 349 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$326$ |
$[326, 121924, 42519854, 14835712320, 5177585320886, 1806976695322084, 630634880026581854, 220091573652898970880, 76811959212766314501926, 26807373765262409484576004]$ |
$326$ |
$[326, 121924, 42519854, 14835712320, 5177585320886, 1806976695322084, 630634880026581854, 220091573652898970880, 76811959212766314501926, 26807373765262409484576004]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-205}) \) |
$C_2$ |
simple |
| 1.349.ax |
$1$ |
$\F_{349}$ |
$349$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 23 x + 349 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$327$ |
$[327, 121971, 42520464, 14835698643, 5177584564707, 1806976681159104, 630634880007503103, 220091573658968262723, 76811959212935207654736, 26807373765264172964328651]$ |
$327$ |
$[327, 121971, 42520464, 14835698643, 5177584564707, 1806976681159104, 630634880007503103, 220091573658968262723, 76811959212935207654736, 26807373765264172964328651]$ |
$7$ |
$0$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
| 1.349.aw |
$1$ |
$\F_{349}$ |
$349$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 22 x + 349 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$328$ |
$[328, 122016, 42520936, 14835681408, 5177583805768, 1806976669689504, 630634880076967912, 220091573666083680768, 76811959213084075297864, 26807373765264792998518176]$ |
$328$ |
$[328, 122016, 42520936, 14835681408, 5177583805768, 1806976669689504, 630634880076967912, 220091573666083680768, 76811959213084075297864, 26807373765264792998518176]$ |
$12$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-57}) \) |
$C_2$ |
simple |
| 1.349.av |
$1$ |
$\F_{349}$ |
$349$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 21 x + 349 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$329$ |
$[329, 122059, 42521276, 14835661155, 5177583063989, 1806976661151424, 630634880224945001, 220091573673685826595, 76811959213201532602604, 26807373765264285812319379]$ |
$329$ |
$[329, 122059, 42521276, 14835661155, 5177583063989, 1806976661151424, 630634880224945001, 220091573673685826595, 76811959213201532602604, 26807373765264285812319379]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-955}) \) |
$C_2$ |
simple |
| 1.349.au |
$1$ |
$\F_{349}$ |
$349$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 20 x + 349 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$330$ |
$[330, 122100, 42521490, 14835638400, 5177582356650, 1806976655658900, 630634880438889810, 220091573681248473600, 76811959213279972904970, 26807373765262777156552500]$ |
$330$ |
$[330, 122100, 42521490, 14835638400, 5177582356650, 1806976655658900, 630634880438889810, 220091573681248473600, 76811959213279972904970, 26807373765262777156552500]$ |
$12$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-249}) \) |
$C_2$ |
simple |
| 1.349.at |
$1$ |
$\F_{349}$ |
$349$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 19 x + 349 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$331$ |
$[331, 122139, 42521584, 14835613635, 5177581698511, 1806976653217344, 630634880704617259, 220091573688302313315, 76811959213315548433456, 26807373765260474763221379]$ |
$331$ |
$[331, 122139, 42521584, 14835613635, 5177581698511, 1806976653217344, 630634880704617259, 220091573688302313315, 76811959213315548433456, 26807373765260474763221379]$ |
$10$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-115}) \) |
$C_2$ |
simple |
| 1.349.as |
$1$ |
$\F_{349}$ |
$349$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 18 x + 349 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$332$ |
$[332, 122176, 42521564, 14835587328, 5177581101932, 1806976653738304, 630634881007068668, 220091573694451811328, 76811959213307921469836, 26807373765257639189229376]$ |
$332$ |
$[332, 122176, 42521564, 14835587328, 5177581101932, 1806976653738304, 630634881007068668, 220091573694451811328, 76811959213307921469836, 26807373765257639189229376]$ |
$10$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-67}) \) |
$C_2$ |
simple |
| 1.349.ar |
$1$ |
$\F_{349}$ |
$349$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 17 x + 349 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$333$ |
$[333, 122211, 42521436, 14835559923, 5177580576993, 1806976657053504, 630634881330977877, 220091573699385999363, 76811959213259846468364, 26807373765254555395703451]$ |
$333$ |
$[333, 122211, 42521436, 14835559923, 5177580576993, 1806976657053504, 630634881330977877, 220091573699385999363, 76811959213259846468364, 26807373765254555395703451]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-123}) \) |
$C_2$ |
simple |
| 1.349.aq |
$1$ |
$\F_{349}$ |
$349$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 16 x + 349 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$334$ |
$[334, 122244, 42521206, 14835531840, 5177580131614, 1806976662928164, 630634881661441606, 220091573702883989760, 76811959213176636401134, 26807373765251506824104004]$ |
$334$ |
$[334, 122244, 42521206, 14835531840, 5177580131614, 1806976662928164, 630634881661441606, 220091573702883989760, 76811959213176636401134, 26807373765251506824104004]$ |
$16$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-285}) \) |
$C_2$ |
simple |
| 1.349.ap |
$1$ |
$\F_{349}$ |
$349$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 15 x + 349 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$335$ |
$[335, 122275, 42520880, 14835503475, 5177579771675, 1806976671073600, 630634881984399095, 220091573704815958275, 76811959213065559702640, 26807373765248753214806875]$ |
$335$ |
$[335, 122275, 42520880, 14835503475, 5177579771675, 1806976671073600, 630634881984399095, 220091573704815958275, 76811959213065559702640, 26807373765248753214806875]$ |
$7$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1171}) \) |
$C_2$ |
simple |
| 1.349.ao |
$1$ |
$\F_{349}$ |
$349$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 14 x + 349 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$336$ |
$[336, 122304, 42520464, 14835475200, 5177579501136, 1806976681159104, 630634882287026064, 220091573705140300800, 76811959212935207654736, 26807373765246512965485504]$ |
$336$ |
$[336, 122304, 42520464, 14835475200, 5177579501136, 1806976681159104, 630634882287026064, 220091573705140300800, 76811959212935207654736, 26807373765246512965485504]$ |
$24$ |
$0$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
| 1.349.an |
$1$ |
$\F_{349}$ |
$349$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 13 x + 349 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$337$ |
$[337, 122331, 42519964, 14835447363, 5177579322157, 1806976692823104, 630634882558048033, 220091573703897629283, 76811959212794865884236, 26807373765244950441766851]$ |
$337$ |
$[337, 122331, 42519964, 14835447363, 5177579322157, 1806976692823104, 630634882558048033, 220091573703897629283, 76811959212794865884236, 26807373765244950441766851]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1227}) \) |
$C_2$ |
simple |
| 1.349.am |
$1$ |
$\F_{349}$ |
$349$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 12 x + 349 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$338$ |
$[338, 122356, 42519386, 14835420288, 5177579235218, 1806976705683604, 630634882787978042, 220091573701202231808, 76811959212653917839314, 26807373765244168327655476]$ |
$338$ |
$[338, 122356, 42519386, 14835420288, 5177579235218, 1806976705683604, 630634882787978042, 220091573701202231808, 76811959212653917839314, 26807373765244168327655476]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-313}) \) |
$C_2$ |
simple |
| 1.349.al |
$1$ |
$\F_{349}$ |
$349$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 11 x + 349 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$339$ |
$[339, 122379, 42518736, 14835394275, 5177579239239, 1806976719347904, 630634882969283811, 220091573697231581475, 76811959212521302667664, 26807373765244204834487379]$ |
$339$ |
$[339, 122379, 42518736, 14835394275, 5177579239239, 1806976719347904, 630634882969283811, 220091573697231581475, 76811959212521302667664, 26807373765244204834487379]$ |
$10$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-51}) \) |
$C_2$ |
simple |
| 1.349.ak |
$1$ |
$\F_{349}$ |
$349$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 10 x + 349 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$340$ |
$[340, 122400, 42518020, 14835369600, 5177579331700, 1806976733421600, 630634883096489380, 220091573692214438400, 76811959212405044839060, 26807373765245035371060000]$ |
$340$ |
$[340, 122400, 42518020, 14835369600, 5177579331700, 1806976733421600, 630634883096489380, 220091573692214438400, 76811959212405044839060, 26807373765245035371060000]$ |
$26$ |
$0$ |
$4$ |
$4$ |
$1$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
simple |
| 1.349.aj |
$1$ |
$\F_{349}$ |
$349$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 9 x + 349 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$341$ |
$[341, 122419, 42517244, 14835346515, 5177579508761, 1806976747516864, 630634883166216269, 220091573686418048835, 76811959212311868137516, 26807373765246578110458379]$ |
$341$ |
$[341, 122419, 42517244, 14835346515, 5177579508761, 1806976747516864, 630634883166216269, 220091573686418048835, 76811959212311868137516, 26807373765246578110458379]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1315}) \) |
$C_2$ |
simple |
| 1.349.ai |
$1$ |
$\F_{349}$ |
$349$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 8 x + 349 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$342$ |
$[342, 122436, 42516414, 14835325248, 5177579765382, 1806976761260004, 630634883177169198, 220091573680134905088, 76811959212246902293686, 26807373765248702767331076]$ |
$342$ |
$[342, 122436, 42516414, 14835325248, 5177579765382, 1806976761260004, 630634883177169198, 220091573680134905088, 76811959212246902293686, 26807373765248702767331076]$ |
$10$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-37}) \) |
$C_2$ |
simple |
| 1.349.ah |
$1$ |
$\F_{349}$ |
$349$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 7 x + 349 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$343$ |
$[343, 122451, 42515536, 14835306003, 5177580095443, 1806976774298304, 630634883130071407, 220091573673669489603, 76811959212213486536464, 26807373765251241819334251]$ |
$343$ |
$[343, 122451, 42515536, 14835306003, 5177580095443, 1806976774298304, 630634883130071407, 220091573673669489603, 76811959212213486536464, 26807373765251241819334251]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1347}) \) |
$C_2$ |
simple |
| 1.349.ag |
$1$ |
$\F_{349}$ |
$349$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 6 x + 349 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$344$ |
$[344, 122464, 42514616, 14835288960, 5177580491864, 1806976786306144, 630634883027554616, 220091573667325386240, 76811959212213070713944, 26807373765254003364529504]$ |
$344$ |
$[344, 122464, 42514616, 14835288960, 5177580491864, 1806976786306144, 630634883027554616, 220091573667325386240, 76811959212213070713944, 26807373765254003364529504]$ |
$12$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-85}) \) |
$C_2$ |
simple |
| 1.349.af |
$1$ |
$\F_{349}$ |
$349$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 5 x + 349 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$345$ |
$[345, 122475, 42513660, 14835274275, 5177580946725, 1806976796990400, 630634882874008665, 220091573661393101475, 76811959212245211367980, 26807373765256784799061875]$ |
$345$ |
$[345, 122475, 42513660, 14835274275, 5177580946725, 1806976796990400, 630634882874008665, 220091573661393101475, 76811959212245211367980, 26807373765256784799061875]$ |
$12$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1371}) \) |
$C_2$ |
simple |
| 1.349.ae |
$1$ |
$\F_{349}$ |
$349$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 4 x + 349 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$346$ |
$[346, 122484, 42512674, 14835262080, 5177581451386, 1806976806095124, 630634882675395874, 220091573656138897920, 76811959212307657243546, 26807373765259386522830004]$ |
$346$ |
$[346, 122484, 42512674, 14835262080, 5177581451386, 1806976806095124, 630634882675395874, 220091573656138897920, 76811959212307657243546, 26807373765259386522830004]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-345}) \) |
$C_2$ |
simple |
| 1.349.ad |
$1$ |
$\F_{349}$ |
$349$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 3 x + 349 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$347$ |
$[347, 122491, 42511664, 14835252483, 5177581996607, 1806976813405504, 630634882439035163, 220091573651794902243, 76811959212396516173936, 26807373765261624931462051]$ |
$347$ |
$[347, 122491, 42511664, 14835252483, 5177581996607, 1806976813405504, 630634882439035163, 220091573651794902243, 76811959212396516173936, 26807373765261624931462051]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1387}) \) |
$C_2$ |
simple |
| 1.349.ac |
$1$ |
$\F_{349}$ |
$349$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 2 x + 349 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$348$ |
$[348, 122496, 42510636, 14835245568, 5177582572668, 1806976818751104, 630634882173360972, 220091573648550709248, 76811959212506493105564, 26807373765263344027099776]$ |
$348$ |
$[348, 122496, 42510636, 14835245568, 5177582572668, 1806976818751104, 630634882173360972, 220091573648550709248, 76811959212506493105564, 26807373765263344027099776]$ |
$24$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-87}) \) |
$C_2$ |
simple |
| 1.349.ab |
$1$ |
$\F_{349}$ |
$349$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - x + 349 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$349$ |
$[349, 122499, 42509596, 14835241395, 5177583169489, 1806976822008384, 630634881887662021, 220091573646546663555, 76811959212631187211724, 26807373765264425074640379]$ |
$349$ |
$[349, 122499, 42509596, 14835241395, 5177583169489, 1806976822008384, 630634881887662021, 220091573646546663555, 76811959212631187211724, 26807373765264425074640379]$ |
$12$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-155}) \) |
$C_2$ |
simple |
| 1.349.a |
$1$ |
$\F_{349}$ |
$349$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 + 349 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$350$ |
$[350, 122500, 42508550, 14835240000, 5177583776750, 1806976823102500, 630634881591804950, 220091573645868960000, 76811959212763434593150, 26807373765264793840562500]$ |
$350$ |
$[350, 122500, 42508550, 14835240000, 5177583776750, 1806976823102500, 630634881591804950, 220091573645868960000, 76811959212763434593150, 26807373765264793840562500]$ |
$14$ |
$0$ |
$1$ |
$1$ |
$2$ |
\(\Q(\sqrt{-349}) \) |
$C_2$ |
simple |
| 1.349.b |
$1$ |
$\F_{349}$ |
$349$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + x + 349 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$351$ |
$[351, 122499, 42507504, 14835241395, 5177584384011, 1806976822008384, 630634881295947879, 220091573646546663555, 76811959212895681974576, 26807373765264425074640379]$ |
$351$ |
$[351, 122499, 42507504, 14835241395, 5177584384011, 1806976822008384, 630634881295947879, 220091573646546663555, 76811959212895681974576, 26807373765264425074640379]$ |
$12$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-155}) \) |
$C_2$ |
simple |
| 1.349.c |
$1$ |
$\F_{349}$ |
$349$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 2 x + 349 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$352$ |
$[352, 122496, 42506464, 14835245568, 5177584980832, 1806976818751104, 630634881010248928, 220091573648550709248, 76811959213020376080736, 26807373765263344027099776]$ |
$352$ |
$[352, 122496, 42506464, 14835245568, 5177584980832, 1806976818751104, 630634881010248928, 220091573648550709248, 76811959213020376080736, 26807373765263344027099776]$ |
$24$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-87}) \) |
$C_2$ |
simple |
| 1.349.d |
$1$ |
$\F_{349}$ |
$349$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 3 x + 349 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$353$ |
$[353, 122491, 42505436, 14835252483, 5177585556893, 1806976813405504, 630634880744574737, 220091573651794902243, 76811959213130353012364, 26807373765261624931462051]$ |
$353$ |
$[353, 122491, 42505436, 14835252483, 5177585556893, 1806976813405504, 630634880744574737, 220091573651794902243, 76811959213130353012364, 26807373765261624931462051]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1387}) \) |
$C_2$ |
simple |
| 1.349.e |
$1$ |
$\F_{349}$ |
$349$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 4 x + 349 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$354$ |
$[354, 122484, 42504426, 14835262080, 5177586102114, 1806976806095124, 630634880508214026, 220091573656138897920, 76811959213219211942754, 26807373765259386522830004]$ |
$354$ |
$[354, 122484, 42504426, 14835262080, 5177586102114, 1806976806095124, 630634880508214026, 220091573656138897920, 76811959213219211942754, 26807373765259386522830004]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-345}) \) |
$C_2$ |
simple |
| 1.349.f |
$1$ |
$\F_{349}$ |
$349$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 5 x + 349 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$355$ |
$[355, 122475, 42503440, 14835274275, 5177586606775, 1806976796990400, 630634880309601235, 220091573661393101475, 76811959213281657818320, 26807373765256784799061875]$ |
$355$ |
$[355, 122475, 42503440, 14835274275, 5177586606775, 1806976796990400, 630634880309601235, 220091573661393101475, 76811959213281657818320, 26807373765256784799061875]$ |
$12$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1371}) \) |
$C_2$ |
simple |
| 1.349.g |
$1$ |
$\F_{349}$ |
$349$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 6 x + 349 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$356$ |
$[356, 122464, 42502484, 14835288960, 5177587061636, 1806976786306144, 630634880156055284, 220091573667325386240, 76811959213313798472356, 26807373765254003364529504]$ |
$356$ |
$[356, 122464, 42502484, 14835288960, 5177587061636, 1806976786306144, 630634880156055284, 220091573667325386240, 76811959213313798472356, 26807373765254003364529504]$ |
$12$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-85}) \) |
$C_2$ |
simple |
| 1.349.h |
$1$ |
$\F_{349}$ |
$349$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 7 x + 349 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$357$ |
$[357, 122451, 42501564, 14835306003, 5177587458057, 1806976774298304, 630634880053538493, 220091573673669489603, 76811959213313382649836, 26807373765251241819334251]$ |
$357$ |
$[357, 122451, 42501564, 14835306003, 5177587458057, 1806976774298304, 630634880053538493, 220091573673669489603, 76811959213313382649836, 26807373765251241819334251]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1347}) \) |
$C_2$ |
simple |
| 1.349.i |
$1$ |
$\F_{349}$ |
$349$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 8 x + 349 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$358$ |
$[358, 122436, 42500686, 14835325248, 5177587788118, 1806976761260004, 630634880006440702, 220091573680134905088, 76811959213279966892614, 26807373765248702767331076]$ |
$358$ |
$[358, 122436, 42500686, 14835325248, 5177587788118, 1806976761260004, 630634880006440702, 220091573680134905088, 76811959213279966892614, 26807373765248702767331076]$ |
$10$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-37}) \) |
$C_2$ |
simple |
| 1.349.j |
$1$ |
$\F_{349}$ |
$349$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 9 x + 349 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$359$ |
$[359, 122419, 42499856, 14835346515, 5177588044739, 1806976747516864, 630634880017393631, 220091573686418048835, 76811959213215001048784, 26807373765246578110458379]$ |
$359$ |
$[359, 122419, 42499856, 14835346515, 5177588044739, 1806976747516864, 630634880017393631, 220091573686418048835, 76811959213215001048784, 26807373765246578110458379]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1315}) \) |
$C_2$ |
simple |
| 1.349.k |
$1$ |
$\F_{349}$ |
$349$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 10 x + 349 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$360$ |
$[360, 122400, 42499080, 14835369600, 5177588221800, 1806976733421600, 630634880087120520, 220091573692214438400, 76811959213121824347240, 26807373765245035371060000]$ |
$360$ |
$[360, 122400, 42499080, 14835369600, 5177588221800, 1806976733421600, 630634880087120520, 220091573692214438400, 76811959213121824347240, 26807373765245035371060000]$ |
$26$ |
$0$ |
$4$ |
$4$ |
$1$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
simple |
| 1.349.l |
$1$ |
$\F_{349}$ |
$349$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 11 x + 349 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$361$ |
$[361, 122379, 42498364, 14835394275, 5177588314261, 1806976719347904, 630634880214326089, 220091573697231581475, 76811959213005566518636, 26807373765244204834487379]$ |
$361$ |
$[361, 122379, 42498364, 14835394275, 5177588314261, 1806976719347904, 630634880214326089, 220091573697231581475, 76811959213005566518636, 26807373765244204834487379]$ |
$10$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-51}) \) |
$C_2$ |
simple |
| 1.349.m |
$1$ |
$\F_{349}$ |
$349$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 12 x + 349 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$362$ |
$[362, 122356, 42497714, 14835420288, 5177588318282, 1806976705683604, 630634880395631858, 220091573701202231808, 76811959212872951346986, 26807373765244168327655476]$ |
$362$ |
$[362, 122356, 42497714, 14835420288, 5177588318282, 1806976705683604, 630634880395631858, 220091573701202231808, 76811959212872951346986, 26807373765244168327655476]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-313}) \) |
$C_2$ |
simple |