| Label |
Dimension |
Base field |
Base char. |
Simple |
Geom. simple |
Primitive |
Ordinary |
Almost ordinary |
Supersingular |
Princ. polarizable |
Jacobian |
L-polynomial |
Newton slopes |
Newton elevation |
$p$-rank |
$p$-corank |
Angle rank |
Angle corank |
$\mathbb{F}_q$ points on curve |
$\mathbb{F}_{q^k}$ points on curve |
$\mathbb{F}_q$ points on variety |
$\mathbb{F}_{q^k}$ points on variety |
Jacobians |
Hyperelliptic Jacobians |
Num. twists |
Max. twist degree |
End. degree |
Number fields |
Galois groups |
Isogeny factors |
| 1.347.abl |
$1$ |
$\F_{347}$ |
$347$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 37 x + 347 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$311$ |
$[311, 119735, 41769788, 14498112475, 5030915829841, 1745729025859280, 605767993022574763, 210201493929843460275, 72939918399338907858596, 25310151684659079955045175]$ |
$311$ |
$[311, 119735, 41769788, 14498112475, 5030915829841, 1745729025859280, 605767993022574763, 210201493929843460275, 72939918399338907858596, 25310151684659079955045175]$ |
$1$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-19}) \) |
$C_2$ |
simple |
| 1.347.abk |
$1$ |
$\F_{347}$ |
$347$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 36 x + 347 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$312$ |
$[312, 119808, 41772744, 14498205696, 5030918374872, 1745729088869376, 605767994471531112, 210201493961202352128, 72939918399982185504888, 25310151684671622638957568]$ |
$312$ |
$[312, 119808, 41772744, 14498205696, 5030918374872, 1745729088869376, 605767994471531112, 210201493961202352128, 72939918399982185504888, 25310151684671622638957568]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-23}) \) |
$C_2$ |
simple |
| 1.347.abj |
$1$ |
$\F_{347}$ |
$347$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 35 x + 347 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$313$ |
$[313, 119879, 41775484, 14498286139, 5030920361183, 1745729131668176, 605767995280947749, 210201493974292761075, 72939918400145268745828, 25310151684672411126958439]$ |
$313$ |
$[313, 119879, 41775484, 14498286139, 5030920361183, 1745729131668176, 605767995280947749, 210201493974292761075, 72939918400145268745828, 25310151684672411126958439]$ |
$1$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-163}) \) |
$C_2$ |
simple |
| 1.347.abi |
$1$ |
$\F_{347}$ |
$347$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 34 x + 347 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$314$ |
$[314, 119948, 41778014, 14498354656, 5030921853994, 1745729157853676, 605767995611159086, 210201493975236171648, 72939918400035457463258, 25310151684667810043113868]$ |
$314$ |
$[314, 119948, 41778014, 14498354656, 5030921853994, 1745729157853676, 605767995611159086, 210201493975236171648, 72939918400035457463258, 25310151684667810043113868]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-58}) \) |
$C_2$ |
simple |
| 1.347.abh |
$1$ |
$\F_{347}$ |
$347$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 33 x + 347 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$315$ |
$[315, 120015, 41780340, 14498412075, 5030922914325, 1745729170632720, 605767995596656935, 210201493968795654675, 72939918399799705330860, 25310151684661834756648575]$ |
$315$ |
$[315, 120015, 41780340, 14498412075, 5030922914325, 1745729170632720, 605767995596656935, 210201493968795654675, 72939918399799705330860, 25310151684661834756648575]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-299}) \) |
$C_2$ |
simple |
| 1.347.abg |
$1$ |
$\F_{347}$ |
$347$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 32 x + 347 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$316$ |
$[316, 120080, 41782468, 14498459200, 5030923599116, 1745729172845840, 605767995348799508, 210201493958583148800, 72939918399537104868316, 25310151684656780708032400]$ |
$316$ |
$[316, 120080, 41782468, 14498459200, 5030923599116, 1745729172845840, 605767995348799508, 210201493958583148800, 72939918399537104868316, 25310151684656780708032400]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-91}) \) |
$C_2$ |
simple |
| 1.347.abf |
$1$ |
$\F_{347}$ |
$347$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 31 x + 347 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$317$ |
$[317, 120143, 41784404, 14498496811, 5030923961347, 1745729166991376, 605767994958349057, 210201493947245425683, 72939918399309527462348, 25310151684653728025478143]$ |
$317$ |
$[317, 120143, 41784404, 14498496811, 5030923961347, 1745729166991376, 605767994958349057, 210201493947245425683, 72939918399309527462348, 25310151684653728025478143]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-427}) \) |
$C_2$ |
simple |
| 1.347.abe |
$1$ |
$\F_{347}$ |
$347$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 30 x + 347 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$318$ |
$[318, 120204, 41786154, 14498525664, 5030924050158, 1745729155248876, 605767994497843194, 210201493936630089600, 72939918399150606341598, 25310151684652939517991564]$ |
$318$ |
$[318, 120204, 41786154, 14498525664, 5030924050158, 1745729155248876, 605767994497843194, 210201493936630089600, 72939918399150606341598, 25310151684652939517991564]$ |
$10$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-122}) \) |
$C_2$ |
simple |
| 1.347.abd |
$1$ |
$\F_{347}$ |
$347$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 29 x + 347 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$319$ |
$[319, 120263, 41787724, 14498546491, 5030923910969, 1745729139501776, 605767994023804931, 210201493927932921843, 72939918399073238517268, 25310151684654168293933543]$ |
$319$ |
$[319, 120263, 41787724, 14498546491, 5030923910969, 1745729139501776, 605767994023804931, 210201493927932921843, 72939918399073238517268, 25310151684654168293933543]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-547}) \) |
$C_2$ |
simple |
| 1.347.abc |
$1$ |
$\F_{347}$ |
$347$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 28 x + 347 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$320$ |
$[320, 120320, 41789120, 14498560000, 5030923585600, 1745729121359360, 605767993578796480, 210201493921827840000, 72939918399075770089280, 25310151684656889534809600]$ |
$320$ |
$[320, 120320, 41789120, 14498560000, 5030923585600, 1745729121359360, 605767993578796480, 210201493921827840000, 72939918399075770089280, 25310151684656889534809600]$ |
$14$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-151}) \) |
$C_2$ |
simple |
| 1.347.abb |
$1$ |
$\F_{347}$ |
$347$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 27 x + 347 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$321$ |
$[321, 120375, 41790348, 14498566875, 5030923112391, 1745729102178000, 605767993193321853, 210201493918580701875, 72939918399147018068436, 25310151684660469349064375]$ |
$321$ |
$[321, 120375, 41790348, 14498566875, 5030923112391, 1745729102178000, 605767993193321853, 210201493918580701875, 72939918399147018068436, 25310151684660469349064375]$ |
$11$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-659}) \) |
$C_2$ |
simple |
| 1.347.aba |
$1$ |
$\F_{347}$ |
$347$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 26 x + 347 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$322$ |
$[322, 120428, 41791414, 14498567776, 5030922526322, 1745729083081676, 605767992887583302, 210201493918148143488, 72939918399270270978658, 25310151684664282136399468]$ |
$322$ |
$[322, 120428, 41791414, 14498567776, 5030922526322, 1745729083081676, 605767992887583302, 210201493918148143488, 72939918399270270978658, 25310151684664282136399468]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-178}) \) |
$C_2$ |
simple |
| 1.347.az |
$1$ |
$\F_{347}$ |
$347$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 25 x + 347 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$323$ |
$[323, 120479, 41792324, 14498563339, 5030921859133, 1745729064981776, 605767992673096639, 210201493920262600275, 72939918399426399979868, 25310151684667786505923439]$ |
$323$ |
$[323, 120479, 41792324, 14498563339, 5030921859133, 1745729064981776, 605767992673096639, 210201493920262600275, 72939918399426399979868, 25310151684667786505923439]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-763}) \) |
$C_2$ |
simple |
| 1.347.ay |
$1$ |
$\F_{347}$ |
$347$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 24 x + 347 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$324$ |
$[324, 120528, 41793084, 14498554176, 5030921139444, 1745729048596176, 605767992554170476, 210201493924504620288, 72939918399596202091428, 25310151684670568507653968]$ |
$324$ |
$[324, 120528, 41793084, 14498554176, 5030921139444, 1745729048596176, 605767992554170476, 210201493924504620288, 72939918399596202091428, 25310151684670568507653968]$ |
$16$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-203}) \) |
$C_2$ |
simple |
| 1.347.ax |
$1$ |
$\F_{347}$ |
$347$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 23 x + 347 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$325$ |
$[325, 120575, 41793700, 14498540875, 5030920392875, 1745729034467600, 605767992529254425, 210201493930363537875, 72939918399762087298300, 25310151684672359752895375]$ |
$325$ |
$[325, 120575, 41793700, 14498540875, 5030920392875, 1745729034467600, 605767992529254425, 210201493930363537875, 72939918399762087298300, 25310151684672359752895375]$ |
$7$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-859}) \) |
$C_2$ |
simple |
| 1.347.aw |
$1$ |
$\F_{347}$ |
$347$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 22 x + 347 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$326$ |
$[326, 120620, 41794178, 14498524000, 5030919642166, 1745729022981260, 605767992592161298, 210201493937287536000, 72939918399909211887206, 25310151684673036911181100]$ |
$326$ |
$[326, 120620, 41794178, 14498524000, 5030919642166, 1745729022981260, 605767992592161298, 210201493937287536000, 72939918399909211887206, 25310151684673036911181100]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-226}) \) |
$C_2$ |
simple |
| 1.347.av |
$1$ |
$\F_{347}$ |
$347$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 21 x + 347 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$327$ |
$[327, 120663, 41794524, 14498504091, 5030918907297, 1745729014381776, 605767992733168347, 210201493944724085043, 72939918400026151288068, 25310151684672608076171543]$ |
$327$ |
$[327, 120663, 41794524, 14498504091, 5030918907297, 1745729014381776, 605767992733168347, 210201493944724085043, 72939918400026151288068, 25310151684672608076171543]$ |
$5$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-947}) \) |
$C_2$ |
simple |
| 1.347.au |
$1$ |
$\F_{347}$ |
$347$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 20 x + 347 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$328$ |
$[328, 120704, 41794744, 14498481664, 5030918205608, 1745729008789376, 605767992940002584, 210201493952151705600, 72939918400105196986888, 25310151684671190586504064]$ |
$328$ |
$[328, 120704, 41794744, 14498481664, 5030918205608, 1745729008789376, 605767992940002584, 210201493952151705600, 72939918400105196986888, 25310151684671190586504064]$ |
$12$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-247}) \) |
$C_2$ |
simple |
| 1.347.at |
$1$ |
$\F_{347}$ |
$347$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 19 x + 347 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$329$ |
$[329, 120743, 41794844, 14498457211, 5030917551919, 1745729006215376, 605767993198715221, 210201493959103962483, 72939918400142353729988, 25310151684668984066475143]$ |
$329$ |
$[329, 120743, 41794844, 14498457211, 5030917551919, 1745729006215376, 605767993198715221, 210201493959103962483, 72939918400142353729988, 25310151684668984066475143]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1027}) \) |
$C_2$ |
simple |
| 1.347.as |
$1$ |
$\F_{347}$ |
$347$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 18 x + 347 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$330$ |
$[330, 120780, 41794830, 14498431200, 5030916958650, 1745729006576940, 605767993494450270, 210201493965186556800, 72939918400137105256170, 25310151684666241711965900]$ |
$330$ |
$[330, 120780, 41794830, 14498431200, 5030916958650, 1745729006576940, 605767993494450270, 210201493965186556800, 72939918400137105256170, 25310151684666241711965900]$ |
$20$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-266}) \) |
$C_2$ |
simple |
| 1.347.ar |
$1$ |
$\F_{347}$ |
$347$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 17 x + 347 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$331$ |
$[331, 120815, 41794708, 14498404075, 5030916435941, 1745729009711120, 605767993812112343, 210201493970088342675, 72939918400092009172876, 25310151684663242185572575]$ |
$331$ |
$[331, 120815, 41794708, 14498404075, 5030916435941, 1745729009711120, 605767993812112343, 210201493970088342675, 72939918400092009172876, 25310151684663242185572575]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1099}) \) |
$C_2$ |
simple |
| 1.347.aq |
$1$ |
$\F_{347}$ |
$347$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 16 x + 347 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$332$ |
$[332, 120848, 41794484, 14498376256, 5030915991772, 1745729015388176, 605767994136938692, 210201493973587054848, 72939918400012174334828, 25310151684660263897844368]$ |
$332$ |
$[332, 120848, 41794484, 14498376256, 5030915991772, 1745729015388176, 605767994136938692, 210201493973587054848, 72939918400012174334828, 25310151684660263897844368]$ |
$12$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-283}) \) |
$C_2$ |
simple |
| 1.347.ap |
$1$ |
$\F_{347}$ |
$347$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 15 x + 347 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$333$ |
$[333, 120879, 41794164, 14498348139, 5030915632083, 1745729023324176, 605767994454980529, 210201493975550493075, 72939918399904667188908, 25310151684657562935233439]$ |
$333$ |
$[333, 120879, 41794164, 14498348139, 5030915632083, 1745729023324176, 605767994454980529, 210201493975550493075, 72939918399904667188908, 25310151684657562935233439]$ |
$7$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1163}) \) |
$C_2$ |
simple |
| 1.347.ao |
$1$ |
$\F_{347}$ |
$347$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 14 x + 347 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$334$ |
$[334, 120908, 41793754, 14498320096, 5030915360894, 1745729033192876, 605767994753498666, 210201493975933868928, 72939918399777887017198, 25310151684655355446197068]$ |
$334$ |
$[334, 120908, 41793754, 14498320096, 5030915360894, 1745729033192876, 605767994753498666, 210201493975933868928, 72939918399777887017198, 25310151684655355446197068]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-298}) \) |
$C_2$ |
simple |
| 1.347.an |
$1$ |
$\F_{347}$ |
$347$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 13 x + 347 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$335$ |
$[335, 120935, 41793260, 14498292475, 5030915180425, 1745729044636880, 605767995021278515, 210201493974773980275, 72939918399640943841140, 25310151684653804911231175]$ |
$335$ |
$[335, 120935, 41793260, 14498292475, 5030915180425, 1745729044636880, 605767995021278515, 210201493974773980275, 72939918399640943841140, 25310151684653804911231175]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1219}) \) |
$C_2$ |
simple |
| 1.347.am |
$1$ |
$\F_{347}$ |
$347$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 12 x + 347 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$336$ |
$[336, 120960, 41792688, 14498265600, 5030915091216, 1745729057278080, 605767995248869488, 210201493972180838400, 72939918399503066943696, 25310151684653014396828800]$ |
$336$ |
$[336, 120960, 41792688, 14498265600, 5030915091216, 1745729057278080, 605767995248869488, 210201493972180838400, 72939918399503066943696, 25310151684653014396828800]$ |
$38$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-311}) \) |
$C_2$ |
simple |
| 1.347.al |
$1$ |
$\F_{347}$ |
$347$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 11 x + 347 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$337$ |
$[337, 120983, 41792044, 14498239771, 5030915092247, 1745729070727376, 605767995428753837, 210201493968327332403, 72939918399373066523188, 25310151684653023623817943]$ |
$337$ |
$[337, 120983, 41792044, 14498239771, 5030915092247, 1745729070727376, 605767995428753837, 210201493968327332403, 72939918399373066523188, 25310151684653023623817943]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1267}) \) |
$C_2$ |
simple |
| 1.347.ak |
$1$ |
$\F_{347}$ |
$347$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 10 x + 347 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$338$ |
$[338, 121004, 41791334, 14498215264, 5030915181058, 1745729084593676, 605767995555449974, 210201493963437475200, 72939918399258865912178, 25310151684653810463611564]$ |
$338$ |
$[338, 121004, 41791334, 14498215264, 5030915181058, 1745729084593676, 605767995555449974, 210201493963437475200, 72939918399258865912178, 25310151684653810463611564]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-322}) \) |
$C_2$ |
simple |
| 1.347.aj |
$1$ |
$\F_{347}$ |
$347$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 9 x + 347 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$339$ |
$[339, 121023, 41790564, 14498192331, 5030915353869, 1745729098492176, 605767995625555311, 210201493957773735123, 72939918399167117077308, 25310151684655296307969743]$ |
$339$ |
$[339, 121023, 41790564, 14498192331, 5030915353869, 1745729098492176, 605767995625555311, 210201493957773735123, 72939918399167117077308, 25310151684655296307969743]$ |
$11$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1307}) \) |
$C_2$ |
simple |
| 1.347.ai |
$1$ |
$\F_{347}$ |
$347$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 8 x + 347 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$340$ |
$[340, 121040, 41789740, 14498171200, 5030915605700, 1745729112051920, 605767995637733660, 210201493951623916800, 72939918399102907761460, 25310151684657354635301200]$ |
$340$ |
$[340, 121040, 41789740, 14498171200, 5030915605700, 1745729112051920, 605767995637733660, 210201493951623916800, 72939918399102907761460, 25310151684657354635301200]$ |
$12$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-331}) \) |
$C_2$ |
simple |
| 1.347.ah |
$1$ |
$\F_{347}$ |
$347$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 7 x + 347 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$341$ |
$[341, 121055, 41788868, 14498152075, 5030915930491, 1745729124922640, 605767995592652233, 210201493945288014675, 72939918399069564637916, 25310151684659822015689775]$ |
$341$ |
$[341, 121055, 41788868, 14498152075, 5030915930491, 1745729124922640, 605767995592652233, 210201493945288014675, 72939918399069564637916, 25310151684659822015689775]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1339}) \) |
$C_2$ |
simple |
| 1.347.ag |
$1$ |
$\F_{347}$ |
$347$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 6 x + 347 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$342$ |
$[342, 121068, 41787954, 14498135136, 5030916321222, 1745729136780876, 605767995492873282, 210201493939065422208, 72939918399068553217398, 25310151684662510754092268]$ |
$342$ |
$[342, 121068, 41787954, 14498135136, 5030916321222, 1745729136780876, 605767995492873282, 210201493939065422208, 72939918399068553217398, 25310151684662510754092268]$ |
$15$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-2}) \) |
$C_2$ |
simple |
| 1.347.af |
$1$ |
$\F_{347}$ |
$347$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 5 x + 347 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$343$ |
$[343, 121079, 41787004, 14498120539, 5030916770033, 1745729147335376, 605767995342705419, 210201493933242839475, 72939918399099471982948, 25310151684665222362888439]$ |
$343$ |
$[343, 121079, 41787004, 14498120539, 5030916770033, 1745729147335376, 605767995342705419, 210201493933242839475, 72939918399099471982948, 25310151684665222362888439]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1363}) \) |
$C_2$ |
simple |
| 1.347.ae |
$1$ |
$\F_{347}$ |
$347$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 4 x + 347 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$344$ |
$[344, 121088, 41786024, 14498108416, 5030917268344, 1745729156331776, 605767995148019656, 210201493928083181568, 72939918399160135324568, 25310151684667761077543168]$ |
$344$ |
$[344, 121088, 41786024, 14498108416, 5030917268344, 1745729156331776, 605767995148019656, 210201493928083181568, 72939918399160135324568, 25310151684667761077543168]$ |
$16$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-7}) \) |
$C_2$ |
simple |
| 1.347.ad |
$1$ |
$\F_{347}$ |
$347$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 3 x + 347 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$345$ |
$[345, 121095, 41785020, 14498098875, 5030917806975, 1745729163556560, 605767994916035205, 210201493923815749875, 72939918399246737305380, 25310151684669946678935975]$ |
$345$ |
$[345, 121095, 41785020, 14498098875, 5030917806975, 1745729163556560, 605767994916035205, 210201493923815749875, 72939918399246737305380, 25310151684669946678935975]$ |
$16$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1379}) \) |
$C_2$ |
simple |
| 1.347.ac |
$1$ |
$\F_{347}$ |
$347$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 2 x + 347 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$346$ |
$[346, 121100, 41783998, 14498092000, 5030918376266, 1745729168840300, 605767994655080078, 210201493920627888000, 72939918399354086113786, 25310151684671625959295500]$ |
$346$ |
$[346, 121100, 41783998, 14498092000, 5030918376266, 1745729168840300, 605767994655080078, 210201493920627888000, 72939918399354086113786, 25310151684671625959295500]$ |
$10$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-346}) \) |
$C_2$ |
simple |
| 1.347.ab |
$1$ |
$\F_{347}$ |
$347$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - x + 347 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$347$ |
$[347, 121103, 41782964, 14498087851, 5030918966197, 1745729172060176, 605767994374331527, 210201493918658303763, 72939918399475897241708, 25310151684672682262017343]$ |
$347$ |
$[347, 121103, 41782964, 14498087851, 5030918966197, 1745729172060176, 605767994374331527, 210201493918658303763, 72939918399475897241708, 25310151684672682262017343]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1387}) \) |
$C_2$ |
simple |
| 1.347.a |
$1$ |
$\F_{347}$ |
$347$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 + 347 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$348$ |
$[348, 121104, 41781924, 14498086464, 5030919566508, 1745729173141776, 605767994083541364, 210201493917992198400, 72939918399605131977468, 25310151684673042635314064]$ |
$348$ |
$[348, 121104, 41781924, 14498086464, 5030919566508, 1745729173141776, 605767994083541364, 210201493917992198400, 72939918399605131977468, 25310151684673042635314064]$ |
$20$ |
$0$ |
$1$ |
$1$ |
$2$ |
\(\Q(\sqrt{-347}) \) |
$C_2$ |
simple |
| 1.347.b |
$1$ |
$\F_{347}$ |
$347$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + x + 347 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$349$ |
$[349, 121103, 41780884, 14498087851, 5030920166819, 1745729172060176, 605767993792751201, 210201493918658303763, 72939918399734366713228, 25310151684672682262017343]$ |
$349$ |
$[349, 121103, 41780884, 14498087851, 5030920166819, 1745729172060176, 605767993792751201, 210201493918658303763, 72939918399734366713228, 25310151684672682262017343]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1387}) \) |
$C_2$ |
simple |
| 1.347.c |
$1$ |
$\F_{347}$ |
$347$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 2 x + 347 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$350$ |
$[350, 121100, 41779850, 14498092000, 5030920756750, 1745729168840300, 605767993512002650, 210201493920627888000, 72939918399856177841150, 25310151684671625959295500]$ |
$350$ |
$[350, 121100, 41779850, 14498092000, 5030920756750, 1745729168840300, 605767993512002650, 210201493920627888000, 72939918399856177841150, 25310151684671625959295500]$ |
$10$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-346}) \) |
$C_2$ |
simple |
| 1.347.d |
$1$ |
$\F_{347}$ |
$347$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 3 x + 347 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$351$ |
$[351, 121095, 41778828, 14498098875, 5030921326041, 1745729163556560, 605767993251047523, 210201493923815749875, 72939918399963526649556, 25310151684669946678935975]$ |
$351$ |
$[351, 121095, 41778828, 14498098875, 5030921326041, 1745729163556560, 605767993251047523, 210201493923815749875, 72939918399963526649556, 25310151684669946678935975]$ |
$16$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1379}) \) |
$C_2$ |
simple |
| 1.347.e |
$1$ |
$\F_{347}$ |
$347$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 4 x + 347 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$352$ |
$[352, 121088, 41777824, 14498108416, 5030921864672, 1745729156331776, 605767993019063072, 210201493928083181568, 72939918400050128630368, 25310151684667761077543168]$ |
$352$ |
$[352, 121088, 41777824, 14498108416, 5030921864672, 1745729156331776, 605767993019063072, 210201493928083181568, 72939918400050128630368, 25310151684667761077543168]$ |
$16$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-7}) \) |
$C_2$ |
simple |
| 1.347.f |
$1$ |
$\F_{347}$ |
$347$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 5 x + 347 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$353$ |
$[353, 121079, 41776844, 14498120539, 5030922362983, 1745729147335376, 605767992824377309, 210201493933242839475, 72939918400110791971988, 25310151684665222362888439]$ |
$353$ |
$[353, 121079, 41776844, 14498120539, 5030922362983, 1745729147335376, 605767992824377309, 210201493933242839475, 72939918400110791971988, 25310151684665222362888439]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1363}) \) |
$C_2$ |
simple |
| 1.347.g |
$1$ |
$\F_{347}$ |
$347$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 6 x + 347 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$354$ |
$[354, 121068, 41775894, 14498135136, 5030922811794, 1745729136780876, 605767992674209446, 210201493939065422208, 72939918400141710737538, 25310151684662510754092268]$ |
$354$ |
$[354, 121068, 41775894, 14498135136, 5030922811794, 1745729136780876, 605767992674209446, 210201493939065422208, 72939918400141710737538, 25310151684662510754092268]$ |
$15$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-2}) \) |
$C_2$ |
simple |
| 1.347.h |
$1$ |
$\F_{347}$ |
$347$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 7 x + 347 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$355$ |
$[355, 121055, 41774980, 14498152075, 5030923202525, 1745729124922640, 605767992574430495, 210201493945288014675, 72939918400140699317020, 25310151684659822015689775]$ |
$355$ |
$[355, 121055, 41774980, 14498152075, 5030923202525, 1745729124922640, 605767992574430495, 210201493945288014675, 72939918400140699317020, 25310151684659822015689775]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1339}) \) |
$C_2$ |
simple |
| 1.347.i |
$1$ |
$\F_{347}$ |
$347$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 8 x + 347 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$356$ |
$[356, 121040, 41774108, 14498171200, 5030923527316, 1745729112051920, 605767992529349068, 210201493951623916800, 72939918400107356193476, 25310151684657354635301200]$ |
$356$ |
$[356, 121040, 41774108, 14498171200, 5030923527316, 1745729112051920, 605767992529349068, 210201493951623916800, 72939918400107356193476, 25310151684657354635301200]$ |
$12$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-331}) \) |
$C_2$ |
simple |
| 1.347.j |
$1$ |
$\F_{347}$ |
$347$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 9 x + 347 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$357$ |
$[357, 121023, 41773284, 14498192331, 5030923779147, 1745729098492176, 605767992541527417, 210201493957773735123, 72939918400043146877628, 25310151684655296307969743]$ |
$357$ |
$[357, 121023, 41773284, 14498192331, 5030923779147, 1745729098492176, 605767992541527417, 210201493957773735123, 72939918400043146877628, 25310151684655296307969743]$ |
$11$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1307}) \) |
$C_2$ |
simple |
| 1.347.k |
$1$ |
$\F_{347}$ |
$347$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 10 x + 347 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$358$ |
$[358, 121004, 41772514, 14498215264, 5030923951958, 1745729084593676, 605767992611632754, 210201493963437475200, 72939918399951398042758, 25310151684653810463611564]$ |
$358$ |
$[358, 121004, 41772514, 14498215264, 5030923951958, 1745729084593676, 605767992611632754, 210201493963437475200, 72939918399951398042758, 25310151684653810463611564]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-322}) \) |
$C_2$ |
simple |
| 1.347.l |
$1$ |
$\F_{347}$ |
$347$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 11 x + 347 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$359$ |
$[359, 120983, 41771804, 14498239771, 5030924040769, 1745729070727376, 605767992738328891, 210201493968327332403, 72939918399837197431748, 25310151684653023623817943]$ |
$359$ |
$[359, 120983, 41771804, 14498239771, 5030924040769, 1745729070727376, 605767992738328891, 210201493968327332403, 72939918399837197431748, 25310151684653023623817943]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-1267}) \) |
$C_2$ |
simple |
| 1.347.m |
$1$ |
$\F_{347}$ |
$347$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 12 x + 347 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$360$ |
$[360, 120960, 41771160, 14498265600, 5030924041800, 1745729057278080, 605767992918213240, 210201493972180838400, 72939918399707197011240, 25310151684653014396828800]$ |
$360$ |
$[360, 120960, 41771160, 14498265600, 5030924041800, 1745729057278080, 605767992918213240, 210201493972180838400, 72939918399707197011240, 25310151684653014396828800]$ |
$38$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-311}) \) |
$C_2$ |
simple |