| Label |
Dimension |
Base field |
Base char. |
Simple |
Geom. simple |
Primitive |
Ordinary |
Almost ordinary |
Supersingular |
Princ. polarizable |
Jacobian |
L-polynomial |
Newton slopes |
Newton elevation |
$p$-rank |
$p$-corank |
Angle rank |
Angle corank |
$\mathbb{F}_q$ points on curve |
$\mathbb{F}_{q^k}$ points on curve |
$\mathbb{F}_q$ points on variety |
$\mathbb{F}_{q^k}$ points on variety |
Jacobians |
Hyperelliptic Jacobians |
Num. twists |
Max. twist degree |
End. degree |
Number fields |
Galois groups |
Isogeny factors |
| 1.193.abb |
$1$ |
$\F_{193}$ |
$193$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 27 x + 193 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$167$ |
$[167, 36907, 7185008, 1387444851, 267784800767, 51682538524864, 9974730345348047, 1925122953831943203, 371548729934279285744, 71708904873667491165307]$ |
$167$ |
$[167, 36907, 7185008, 1387444851, 267784800767, 51682538524864, 9974730345348047, 1925122953831943203, 371548729934279285744, 71708904873667491165307]$ |
$1$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-43}) \) |
$C_2$ |
simple |
| 1.193.aba |
$1$ |
$\F_{193}$ |
$193$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 26 x + 193 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$168$ |
$[168, 36960, 7186536, 1387478400, 267785421288, 51682548566880, 9974730488704296, 1925122955601753600, 371548729951713632808, 71708904873758293864800]$ |
$168$ |
$[168, 36960, 7186536, 1387478400, 267785421288, 51682548566880, 9974730488704296, 1925122955601753600, 371548729951713632808, 71708904873758293864800]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-6}) \) |
$C_2$ |
simple |
| 1.193.az |
$1$ |
$\F_{193}$ |
$193$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 25 x + 193 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$169$ |
$[169, 37011, 7187908, 1387505379, 267785840569, 51682553604864, 9974730525715033, 1925122955391991875, 371548729936643739844, 71708904873383679289011]$ |
$169$ |
$[169, 37011, 7187908, 1387505379, 267785840569, 51682553604864, 9974730525715033, 1925122955391991875, 371548729936643739844, 71708904873383679289011]$ |
$3$ |
$0$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
| 1.193.ay |
$1$ |
$\F_{193}$ |
$193$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 24 x + 193 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$170$ |
$[170, 37060, 7189130, 1387526400, 267786091850, 51682554922180, 9974730495777770, 1925122954219545600, 371548729911809905130, 71708904872990668015300]$ |
$170$ |
$[170, 37060, 7189130, 1387526400, 267786091850, 51682554922180, 9974730495777770, 1925122954219545600, 371548729911809905130, 71708904872990668015300]$ |
$5$ |
$0$ |
$4$ |
$4$ |
$1$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
simple |
| 1.193.ax |
$1$ |
$\F_{193}$ |
$193$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 23 x + 193 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$171$ |
$[171, 37107, 7190208, 1387542051, 267786205371, 51682553604864, 9974730429197019, 1925122952772657603, 371548729890080996544, 71708904872771704964307]$ |
$171$ |
$[171, 37107, 7190208, 1387542051, 267786205371, 51682553604864, 9974730429197019, 1925122952772657603, 371548729890080996544, 71708904872771704964307]$ |
$5$ |
$0$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
| 1.193.aw |
$1$ |
$\F_{193}$ |
$193$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 22 x + 193 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$172$ |
$[172, 37152, 7191148, 1387552896, 267786208492, 51682550559264, 9974730348535852, 1925122951482720768, 371548729877416309804, 71708904872765321036832]$ |
$172$ |
$[172, 37152, 7191148, 1387552896, 267786208492, 51682550559264, 9974730348535852, 1925122951482720768, 371548729877416309804, 71708904872765321036832]$ |
$9$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-2}) \) |
$C_2$ |
simple |
| 1.193.av |
$1$ |
$\F_{193}$ |
$193$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 21 x + 193 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$173$ |
$[173, 37195, 7191956, 1387559475, 267786125813, 51682546528960, 9974730269846501, 1925122950585562275, 371548729875199281428, 71708904872927861088475]$ |
$173$ |
$[173, 37195, 7191956, 1387559475, 267786125813, 51682546528960, 9974730269846501, 1925122950585562275, 371548729875199281428, 71708904872927861088475]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-331}) \) |
$C_2$ |
simple |
| 1.193.au |
$1$ |
$\F_{193}$ |
$193$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 20 x + 193 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$174$ |
$[174, 37236, 7192638, 1387562304, 267785979294, 51682542110964, 9974730203785038, 1925122950173164800, 371548729882034608014, 71708904873182323419636]$ |
$174$ |
$[174, 37236, 7192638, 1387562304, 267785979294, 51682542110964, 9974730203785038, 1925122950173164800, 371548729882034608014, 71708904873182323419636]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-93}) \) |
$C_2$ |
simple |
| 1.193.at |
$1$ |
$\F_{193}$ |
$193$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 19 x + 193 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$175$ |
$[175, 37275, 7193200, 1387561875, 267785788375, 51682537771200, 9974730156615175, 1925122950236731875, 371548729895091977200, 71708904873449472748875]$ |
$175$ |
$[175, 37275, 7193200, 1387561875, 267785788375, 51682537771200, 9974730156615175, 1925122950236731875, 371548729895091977200, 71708904873449472748875]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-411}) \) |
$C_2$ |
simple |
| 1.193.as |
$1$ |
$\F_{193}$ |
$193$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 18 x + 193 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$176$ |
$[176, 37312, 7193648, 1387558656, 267785570096, 51682533859264, 9974730131106224, 1925122950701964288, 371548729911071632304, 71708904873665587076032]$ |
$176$ |
$[176, 37312, 7193648, 1387558656, 267785570096, 51682533859264, 9974730131106224, 1925122950701964288, 371548729911071632304, 71708904873665587076032]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-7}) \) |
$C_2$ |
simple |
| 1.193.ar |
$1$ |
$\F_{193}$ |
$193$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 17 x + 193 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$177$ |
$[177, 37347, 7193988, 1387553091, 267785339217, 51682530622464, 9974730127330257, 1925122951457374083, 371548729926859372164, 71708904873790475299107]$ |
$177$ |
$[177, 37347, 7193988, 1387553091, 267785339217, 51682530622464, 9974730127330257, 1925122951457374083, 371548729926859372164, 71708904873790475299107]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-483}) \) |
$C_2$ |
simple |
| 1.193.aq |
$1$ |
$\F_{193}$ |
$193$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 16 x + 193 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$178$ |
$[178, 37380, 7194226, 1387545600, 267785108338, 51682528219140, 9974730143363506, 1925122952376422400, 371548729939931330098, 71708904873808753296900]$ |
$178$ |
$[178, 37380, 7194226, 1387545600, 267785108338, 51682528219140, 9974730143363506, 1925122952376422400, 371548729939931330098, 71708904873808753296900]$ |
$12$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-129}) \) |
$C_2$ |
simple |
| 1.193.ap |
$1$ |
$\F_{193}$ |
$193$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 15 x + 193 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$179$ |
$[179, 37411, 7194368, 1387536579, 267784888019, 51682526731264, 9974730175897043, 1925122953334227075, 371548729948561981184, 71708904873726787799011]$ |
$179$ |
$[179, 37411, 7194368, 1387536579, 267784888019, 51682526731264, 9974730175897043, 1925122953334227075, 371548729948561981184, 71708904873726787799011]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-547}) \) |
$C_2$ |
simple |
| 1.193.ao |
$1$ |
$\F_{193}$ |
$193$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 14 x + 193 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$180$ |
$[180, 37440, 7194420, 1387526400, 267784686900, 51682526176320, 9974730220761780, 1925122954219545600, 371548729951882295220, 71708904873567206107200]$ |
$180$ |
$[180, 37440, 7194420, 1387526400, 267784686900, 51682526176320, 9974730220761780, 1925122954219545600, 371548729951882295220, 71708904873567206107200]$ |
$18$ |
$0$ |
$4$ |
$4$ |
$1$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
simple |
| 1.193.an |
$1$ |
$\F_{193}$ |
$193$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 13 x + 193 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$181$ |
$[181, 37467, 7194388, 1387515411, 267784511821, 51682526518464, 9974730273372829, 1925122954942698723, 371548729949828783764, 71708904873362421978507]$ |
$181$ |
$[181, 37467, 7194388, 1387515411, 267784511821, 51682526518464, 9974730273372829, 1925122954942698723, 371548729949828783764, 71708904873362421978507]$ |
$5$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-67}) \) |
$C_2$ |
simple |
| 1.193.am |
$1$ |
$\F_{193}$ |
$193$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 12 x + 193 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$182$ |
$[182, 37492, 7194278, 1387503936, 267784367942, 51682527678964, 9974730329098262, 1925122955440059648, 371548729943018383574, 71708904873148240102132]$ |
$182$ |
$[182, 37492, 7194278, 1387503936, 267784367942, 51682527678964, 9974730329098262, 1925122955440059648, 371548729943018383574, 71708904873148240102132]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-157}) \) |
$C_2$ |
simple |
| 1.193.al |
$1$ |
$\F_{193}$ |
$193$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 11 x + 193 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$183$ |
$[183, 37515, 7194096, 1387492275, 267784258863, 51682529545920, 9974730383557311, 1925122955675693475, 371548729932578675568, 71708904872958269970075]$ |
$183$ |
$[183, 37515, 7194096, 1387492275, 267784258863, 51682529545920, 9974730383557311, 1925122955675693475, 371548729932578675568, 71708904872958269970075]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-651}) \) |
$C_2$ |
simple |
| 1.193.ak |
$1$ |
$\F_{193}$ |
$193$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 10 x + 193 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$184$ |
$[184, 37536, 7193848, 1387480704, 267784186744, 51682531983264, 9974730432853048, 1925122955640691200, 371548729919957858104, 71708904872819600927136]$ |
$184$ |
$[184, 37536, 7193848, 1387480704, 267784186744, 51682531983264, 9974730432853048, 1925122955640691200, 371548729919957858104, 71708904872819600927136]$ |
$12$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-42}) \) |
$C_2$ |
simple |
| 1.193.aj |
$1$ |
$\F_{193}$ |
$193$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 9 x + 193 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$185$ |
$[185, 37555, 7193540, 1387469475, 267784152425, 51682534839040, 9974730473744585, 1925122955350702275, 371548729906734175940, 71708904872749960160275]$ |
$185$ |
$[185, 37555, 7193540, 1387469475, 267784152425, 51682534839040, 9974730473744585, 1925122955350702275, 371548729906734175940, 71708904872749960160275]$ |
$5$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-691}) \) |
$C_2$ |
simple |
| 1.193.ai |
$1$ |
$\F_{193}$ |
$193$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 8 x + 193 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$186$ |
$[186, 37572, 7193178, 1387458816, 267784155546, 51682537952964, 9974730503763834, 1925122954842129408, 371548729894440151674, 71708904872756390721732]$ |
$186$ |
$[186, 37572, 7193178, 1387458816, 267784155546, 51682537952964, 9974730503763834, 1925122954842129408, 371548729894440151674, 71708904872756390721732]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-177}) \) |
$C_2$ |
simple |
| 1.193.ah |
$1$ |
$\F_{193}$ |
$193$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 7 x + 193 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$187$ |
$[187, 37587, 7192768, 1387448931, 267784194667, 51682541163264, 9974730521281867, 1925122954167408963, 371548729884412974784, 71708904872835343745907]$ |
$187$ |
$[187, 37587, 7192768, 1387448931, 267784194667, 51682541163264, 9974730521281867, 1925122954167408963, 371548729884412974784, 71708904872835343745907]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-723}) \) |
$C_2$ |
simple |
| 1.193.ag |
$1$ |
$\F_{193}$ |
$193$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 6 x + 193 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$188$ |
$[188, 37600, 7192316, 1387440000, 267784267388, 51682544312800, 9974730525529916, 1925122953389760000, 371548729877678774588, 71708904872973974188000]$ |
$188$ |
$[188, 37600, 7192316, 1387440000, 267784267388, 51682544312800, 9974730525529916, 1925122953389760000, 371548729877678774588, 71708904872973974188000]$ |
$12$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-46}) \) |
$C_2$ |
simple |
| 1.193.af |
$1$ |
$\F_{193}$ |
$193$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 5 x + 193 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$189$ |
$[189, 37611, 7191828, 1387432179, 267784370469, 51682547254464, 9974730516580053, 1925122952577744675, 371548729874875237524, 71708904873152359054011]$ |
$189$ |
$[189, 37611, 7191828, 1387432179, 267784370469, 51682547254464, 9974730516580053, 1925122952577744675, 371548729874875237524, 71708904873152359054011]$ |
$9$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-83}) \) |
$C_2$ |
simple |
| 1.193.ae |
$1$ |
$\F_{193}$ |
$193$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 4 x + 193 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$190$ |
$[190, 37620, 7191310, 1387425600, 267784499950, 51682549855860, 9974730495290590, 1925122951799942400, 371548729876214126110, 71708904873346317578100]$ |
$190$ |
$[190, 37620, 7191310, 1387425600, 267784499950, 51682549855860, 9974730495290590, 1925122951799942400, 371548729876214126110, 71708904873346317578100]$ |
$16$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-21}) \) |
$C_2$ |
simple |
| 1.193.ad |
$1$ |
$\F_{193}$ |
$193$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 3 x + 193 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$191$ |
$[191, 37627, 7190768, 1387420371, 267784651271, 51682552003264, 9974730463221239, 1925122951119999843, 371548729881482716784, 71708904873530500505707]$ |
$191$ |
$[191, 37627, 7190768, 1387420371, 267784651271, 51682552003264, 9974730463221239, 1925122951119999843, 371548729881482716784, 71708904873530500505707]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-763}) \) |
$C_2$ |
simple |
| 1.193.ac |
$1$ |
$\F_{193}$ |
$193$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 2 x + 193 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$192$ |
$[192, 37632, 7190208, 1387416576, 267784819392, 51682553604864, 9974730422523072, 1925122950592278528, 371548729890080996544, 71708904873681426930432]$ |
$192$ |
$[192, 37632, 7190208, 1387416576, 267784819392, 51682553604864, 9974730422523072, 1925122950592278528, 371548729890080996544, 71708904873681426930432]$ |
$16$ |
$0$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
| 1.193.ab |
$1$ |
$\F_{193}$ |
$193$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - x + 193 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$193$ |
$[193, 37635, 7189636, 1387414275, 267784998913, 51682554593280, 9974730375808321, 1925122950258281475, 371548729901089643908, 71708904873780178380675]$ |
$193$ |
$[193, 37635, 7189636, 1387414275, 267784998913, 51682554593280, 9974730375808321, 1925122950258281475, 371548729901089643908, 71708904873780178380675]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-771}) \) |
$C_2$ |
simple |
| 1.193.a |
$1$ |
$\F_{193}$ |
$193$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 + 193 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$194$ |
$[194, 37636, 7189058, 1387413504, 267785184194, 51682554927364, 9974730326005058, 1925122950144000000, 371548729913362368194, 71708904873814507429636]$ |
$194$ |
$[194, 37636, 7189058, 1387413504, 267785184194, 51682554927364, 9974730326005058, 1925122950144000000, 371548729913362368194, 71708904873814507429636]$ |
$4$ |
$0$ |
$1$ |
$1$ |
$2$ |
\(\Q(\sqrt{-193}) \) |
$C_2$ |
simple |
| 1.193.b |
$1$ |
$\F_{193}$ |
$193$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + x + 193 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$195$ |
$[195, 37635, 7188480, 1387414275, 267785369475, 51682554593280, 9974730276201795, 1925122950258281475, 371548729925635092480, 71708904873780178380675]$ |
$195$ |
$[195, 37635, 7188480, 1387414275, 267785369475, 51682554593280, 9974730276201795, 1925122950258281475, 371548729925635092480, 71708904873780178380675]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-771}) \) |
$C_2$ |
simple |
| 1.193.c |
$1$ |
$\F_{193}$ |
$193$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 2 x + 193 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$196$ |
$[196, 37632, 7187908, 1387416576, 267785548996, 51682553604864, 9974730229487044, 1925122950592278528, 371548729936643739844, 71708904873681426930432]$ |
$196$ |
$[196, 37632, 7187908, 1387416576, 267785548996, 51682553604864, 9974730229487044, 1925122950592278528, 371548729936643739844, 71708904873681426930432]$ |
$16$ |
$0$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
| 1.193.d |
$1$ |
$\F_{193}$ |
$193$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 3 x + 193 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$197$ |
$[197, 37627, 7187348, 1387420371, 267785717117, 51682552003264, 9974730188788877, 1925122951119999843, 371548729945242019604, 71708904873530500505707]$ |
$197$ |
$[197, 37627, 7187348, 1387420371, 267785717117, 51682552003264, 9974730188788877, 1925122951119999843, 371548729945242019604, 71708904873530500505707]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-763}) \) |
$C_2$ |
simple |
| 1.193.e |
$1$ |
$\F_{193}$ |
$193$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 4 x + 193 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$198$ |
$[198, 37620, 7186806, 1387425600, 267785868438, 51682549855860, 9974730156719526, 1925122951799942400, 371548729950510610278, 71708904873346317578100]$ |
$198$ |
$[198, 37620, 7186806, 1387425600, 267785868438, 51682549855860, 9974730156719526, 1925122951799942400, 371548729950510610278, 71708904873346317578100]$ |
$16$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-21}) \) |
$C_2$ |
simple |
| 1.193.f |
$1$ |
$\F_{193}$ |
$193$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 5 x + 193 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$199$ |
$[199, 37611, 7186288, 1387432179, 267785997919, 51682547254464, 9974730135430063, 1925122952577744675, 371548729951849498864, 71708904873152359054011]$ |
$199$ |
$[199, 37611, 7186288, 1387432179, 267785997919, 51682547254464, 9974730135430063, 1925122952577744675, 371548729951849498864, 71708904873152359054011]$ |
$9$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-83}) \) |
$C_2$ |
simple |
| 1.193.g |
$1$ |
$\F_{193}$ |
$193$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 6 x + 193 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$200$ |
$[200, 37600, 7185800, 1387440000, 267786101000, 51682544312800, 9974730126480200, 1925122953389760000, 371548729949045961800, 71708904872973974188000]$ |
$200$ |
$[200, 37600, 7185800, 1387440000, 267786101000, 51682544312800, 9974730126480200, 1925122953389760000, 371548729949045961800, 71708904872973974188000]$ |
$12$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-46}) \) |
$C_2$ |
simple |
| 1.193.h |
$1$ |
$\F_{193}$ |
$193$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 7 x + 193 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$201$ |
$[201, 37587, 7185348, 1387448931, 267786173721, 51682541163264, 9974730130728249, 1925122954167408963, 371548729942311761604, 71708904872835343745907]$ |
$201$ |
$[201, 37587, 7185348, 1387448931, 267786173721, 51682541163264, 9974730130728249, 1925122954167408963, 371548729942311761604, 71708904872835343745907]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-723}) \) |
$C_2$ |
simple |
| 1.193.i |
$1$ |
$\F_{193}$ |
$193$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 8 x + 193 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$202$ |
$[202, 37572, 7184938, 1387458816, 267786212842, 51682537952964, 9974730148246282, 1925122954842129408, 371548729932284584714, 71708904872756390721732]$ |
$202$ |
$[202, 37572, 7184938, 1387458816, 267786212842, 51682537952964, 9974730148246282, 1925122954842129408, 371548729932284584714, 71708904872756390721732]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-177}) \) |
$C_2$ |
simple |
| 1.193.j |
$1$ |
$\F_{193}$ |
$193$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 9 x + 193 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$203$ |
$[203, 37555, 7184576, 1387469475, 267786215963, 51682534839040, 9974730178265531, 1925122955350702275, 371548729919990560448, 71708904872749960160275]$ |
$203$ |
$[203, 37555, 7184576, 1387469475, 267786215963, 51682534839040, 9974730178265531, 1925122955350702275, 371548729919990560448, 71708904872749960160275]$ |
$5$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-691}) \) |
$C_2$ |
simple |
| 1.193.k |
$1$ |
$\F_{193}$ |
$193$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 10 x + 193 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$204$ |
$[204, 37536, 7184268, 1387480704, 267786181644, 51682531983264, 9974730219157068, 1925122955640691200, 371548729906766878284, 71708904872819600927136]$ |
$204$ |
$[204, 37536, 7184268, 1387480704, 267786181644, 51682531983264, 9974730219157068, 1925122955640691200, 371548729906766878284, 71708904872819600927136]$ |
$12$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-42}) \) |
$C_2$ |
simple |
| 1.193.l |
$1$ |
$\F_{193}$ |
$193$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 11 x + 193 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$205$ |
$[205, 37515, 7184020, 1387492275, 267786109525, 51682529545920, 9974730268452805, 1925122955675693475, 371548729894146060820, 71708904872958269970075]$ |
$205$ |
$[205, 37515, 7184020, 1387492275, 267786109525, 51682529545920, 9974730268452805, 1925122955675693475, 371548729894146060820, 71708904872958269970075]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-651}) \) |
$C_2$ |
simple |
| 1.193.m |
$1$ |
$\F_{193}$ |
$193$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 12 x + 193 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$206$ |
$[206, 37492, 7183838, 1387503936, 267786000446, 51682527678964, 9974730322911854, 1925122955440059648, 371548729883706352814, 71708904873148240102132]$ |
$206$ |
$[206, 37492, 7183838, 1387503936, 267786000446, 51682527678964, 9974730322911854, 1925122955440059648, 371548729883706352814, 71708904873148240102132]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-157}) \) |
$C_2$ |
simple |
| 1.193.n |
$1$ |
$\F_{193}$ |
$193$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 13 x + 193 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$207$ |
$[207, 37467, 7183728, 1387515411, 267785856567, 51682526518464, 9974730378637287, 1925122954942698723, 371548729876895952624, 71708904873362421978507]$ |
$207$ |
$[207, 37467, 7183728, 1387515411, 267785856567, 51682526518464, 9974730378637287, 1925122954942698723, 371548729876895952624, 71708904873362421978507]$ |
$5$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-67}) \) |
$C_2$ |
simple |
| 1.193.o |
$1$ |
$\F_{193}$ |
$193$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 14 x + 193 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$208$ |
$[208, 37440, 7183696, 1387526400, 267785681488, 51682526176320, 9974730431248336, 1925122954219545600, 371548729874842441168, 71708904873567206107200]$ |
$208$ |
$[208, 37440, 7183696, 1387526400, 267785681488, 51682526176320, 9974730431248336, 1925122954219545600, 371548729874842441168, 71708904873567206107200]$ |
$18$ |
$0$ |
$4$ |
$4$ |
$1$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
simple |
| 1.193.p |
$1$ |
$\F_{193}$ |
$193$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 15 x + 193 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$209$ |
$[209, 37411, 7183748, 1387536579, 267785480369, 51682526731264, 9974730476113073, 1925122953334227075, 371548729878162755204, 71708904873726787799011]$ |
$209$ |
$[209, 37411, 7183748, 1387536579, 267785480369, 51682526731264, 9974730476113073, 1925122953334227075, 371548729878162755204, 71708904873726787799011]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-547}) \) |
$C_2$ |
simple |
| 1.193.q |
$1$ |
$\F_{193}$ |
$193$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 16 x + 193 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$210$ |
$[210, 37380, 7183890, 1387545600, 267785260050, 51682528219140, 9974730508646610, 1925122952376422400, 371548729886793406290, 71708904873808753296900]$ |
$210$ |
$[210, 37380, 7183890, 1387545600, 267785260050, 51682528219140, 9974730508646610, 1925122952376422400, 371548729886793406290, 71708904873808753296900]$ |
$12$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-129}) \) |
$C_2$ |
simple |
| 1.193.r |
$1$ |
$\F_{193}$ |
$193$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 17 x + 193 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$211$ |
$[211, 37347, 7184128, 1387553091, 267785029171, 51682530622464, 9974730524679859, 1925122951457374083, 371548729899865364224, 71708904873790475299107]$ |
$211$ |
$[211, 37347, 7184128, 1387553091, 267785029171, 51682530622464, 9974730524679859, 1925122951457374083, 371548729899865364224, 71708904873790475299107]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-483}) \) |
$C_2$ |
simple |
| 1.193.s |
$1$ |
$\F_{193}$ |
$193$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 18 x + 193 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$212$ |
$[212, 37312, 7184468, 1387558656, 267784798292, 51682533859264, 9974730520903892, 1925122950701964288, 371548729915653104084, 71708904873665587076032]$ |
$212$ |
$[212, 37312, 7184468, 1387558656, 267784798292, 51682533859264, 9974730520903892, 1925122950701964288, 371548729915653104084, 71708904873665587076032]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-7}) \) |
$C_2$ |
simple |
| 1.193.t |
$1$ |
$\F_{193}$ |
$193$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 19 x + 193 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$213$ |
$[213, 37275, 7184916, 1387561875, 267784580013, 51682537771200, 9974730495394941, 1925122950236731875, 371548729931632759188, 71708904873449472748875]$ |
$213$ |
$[213, 37275, 7184916, 1387561875, 267784580013, 51682537771200, 9974730495394941, 1925122950236731875, 371548729931632759188, 71708904873449472748875]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-411}) \) |
$C_2$ |
simple |
| 1.193.u |
$1$ |
$\F_{193}$ |
$193$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 20 x + 193 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$214$ |
$[214, 37236, 7185478, 1387562304, 267784389094, 51682542110964, 9974730448225078, 1925122950173164800, 371548729944690128374, 71708904873182323419636]$ |
$214$ |
$[214, 37236, 7185478, 1387562304, 267784389094, 51682542110964, 9974730448225078, 1925122950173164800, 371548729944690128374, 71708904873182323419636]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-93}) \) |
$C_2$ |
simple |
| 1.193.v |
$1$ |
$\F_{193}$ |
$193$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 21 x + 193 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$215$ |
$[215, 37195, 7186160, 1387559475, 267784242575, 51682546528960, 9974730382163615, 1925122950585562275, 371548729951525454960, 71708904872927861088475]$ |
$215$ |
$[215, 37195, 7186160, 1387559475, 267784242575, 51682546528960, 9974730382163615, 1925122950585562275, 371548729951525454960, 71708904872927861088475]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-331}) \) |
$C_2$ |
simple |
| 1.193.w |
$1$ |
$\F_{193}$ |
$193$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 22 x + 193 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$216$ |
$[216, 37152, 7186968, 1387552896, 267784159896, 51682550559264, 9974730303474264, 1925122951482720768, 371548729949308426584, 71708904872765321036832]$ |
$216$ |
$[216, 37152, 7186968, 1387552896, 267784159896, 51682550559264, 9974730303474264, 1925122951482720768, 371548729949308426584, 71708904872765321036832]$ |
$9$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-2}) \) |
$C_2$ |
simple |