| Label |
Dimension |
Base field |
Base char. |
Simple |
Geom. simple |
Primitive |
Ordinary |
Almost ordinary |
Supersingular |
Princ. polarizable |
Jacobian |
L-polynomial |
Newton slopes |
Newton elevation |
$p$-rank |
$p$-corank |
Angle rank |
Angle corank |
$\mathbb{F}_q$ points on curve |
$\mathbb{F}_{q^k}$ points on curve |
$\mathbb{F}_q$ points on variety |
$\mathbb{F}_{q^k}$ points on variety |
Jacobians |
Hyperelliptic Jacobians |
Num. twists |
Max. twist degree |
End. degree |
Number fields |
Galois groups |
Isogeny factors |
| 1.173.aba |
$1$ |
$\F_{173}$ |
$173$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 26 x + 173 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$148$ |
$[148, 29600, 5173636, 895696000, 154963323188, 26808747024800, 4637914260882596, 802359177862464000, 138808137871752943828, 24013807852597221668000]$ |
$148$ |
$[148, 29600, 5173636, 895696000, 154963323188, 26808747024800, 4637914260882596, 802359177862464000, 138808137871752943828, 24013807852597221668000]$ |
$2$ |
$0$ |
$4$ |
$4$ |
$1$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
simple |
| 1.173.az |
$1$ |
$\F_{173}$ |
$173$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 25 x + 173 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$149$ |
$[149, 29651, 5175068, 895727059, 154963900969, 26808756665024, 4637914408239373, 802359179944193475, 138808137898917085964, 24013807852920796939211]$ |
$149$ |
$[149, 29651, 5175068, 895727059, 154963900969, 26808756665024, 4637914408239373, 802359179944193475, 138808137898917085964, 24013807852920796939211]$ |
$1$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-67}) \) |
$C_2$ |
simple |
| 1.173.ay |
$1$ |
$\F_{173}$ |
$173$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 24 x + 173 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$150$ |
$[150, 29700, 5176350, 895752000, 154964295750, 26808761816100, 4637914460235150, 802359180219168000, 138808137895053103350, 24013807852757937538500]$ |
$150$ |
$[150, 29700, 5176350, 895752000, 154964295750, 26808761816100, 4637914460235150, 802359180219168000, 138808137895053103350, 24013807852757937538500]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-29}) \) |
$C_2$ |
simple |
| 1.173.ax |
$1$ |
$\F_{173}$ |
$173$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 23 x + 173 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$151$ |
$[151, 29747, 5177488, 895771411, 154964538371, 26808763634624, 4637914451603759, 802359179572257603, 138808137879924318544, 24013807852503201744107]$ |
$151$ |
$[151, 29747, 5177488, 895771411, 154964538371, 26808763634624, 4637914451603759, 802359179572257603, 138808137879924318544, 24013807852503201744107]$ |
$1$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-163}) \) |
$C_2$ |
simple |
| 1.173.aw |
$1$ |
$\F_{173}$ |
$173$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 22 x + 173 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$152$ |
$[152, 29792, 5178488, 895785856, 154964656792, 26808763094624, 4637914408934392, 802359178601799168, 138808137864859867544, 24013807852336112673632]$ |
$152$ |
$[152, 29792, 5178488, 895785856, 154964656792, 26808763094624, 4637914408934392, 802359178601799168, 138808137864859867544, 24013807852336112673632]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-13}) \) |
$C_2$ |
simple |
| 1.173.av |
$1$ |
$\F_{173}$ |
$173$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 21 x + 173 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$153$ |
$[153, 29835, 5179356, 895795875, 154964676213, 26808761004480, 4637914351919001, 802359177683587875, 138808137855315385548, 24013807852306033098675]$ |
$153$ |
$[153, 29835, 5179356, 895795875, 154964676213, 26808761004480, 4637914351919001, 802359177683587875, 138808137855315385548, 24013807852306033098675]$ |
$7$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-251}) \) |
$C_2$ |
simple |
| 1.173.au |
$1$ |
$\F_{173}$ |
$173$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 20 x + 173 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$154$ |
$[154, 29876, 5180098, 895801984, 154964619194, 26808758023124, 4637914294483778, 802359177025190400, 138808137852876233434, 24013807852392201294836]$ |
$154$ |
$[154, 29876, 5180098, 895801984, 154964619194, 26808758023124, 4637914294483778, 802359177025190400, 138808137852876233434, 24013807852392201294836]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-73}) \) |
$C_2$ |
simple |
| 1.173.at |
$1$ |
$\F_{173}$ |
$173$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 19 x + 173 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$155$ |
$[155, 29915, 5180720, 895804675, 154964505775, 26808754675520, 4637914245809755, 802359176711487075, 138808137856787377520, 24013807852544271335075]$ |
$155$ |
$[155, 29915, 5180720, 895804675, 154964505775, 26808754675520, 4637914245809755, 802359176711487075, 138808137856787377520, 24013807852544271335075]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-331}) \) |
$C_2$ |
simple |
| 1.173.as |
$1$ |
$\F_{173}$ |
$173$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 18 x + 173 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$156$ |
$[156, 29952, 5181228, 895804416, 154964353596, 26808751367424, 4637914211247564, 802359176742309888, 138808137865086051804, 24013807852707891608832]$ |
$156$ |
$[156, 29952, 5181228, 895804416, 154964353596, 26808751367424, 4637914211247564, 802359176742309888, 138808137865086051804, 24013807852707891608832]$ |
$12$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-23}) \) |
$C_2$ |
simple |
| 1.173.ar |
$1$ |
$\F_{173}$ |
$173$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 17 x + 173 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$157$ |
$[157, 29987, 5181628, 895801651, 154964178017, 26808748399424, 4637914193131397, 802359177063002883, 138808137875405711404, 24013807852839123742907]$ |
$157$ |
$[157, 29987, 5181628, 895801651, 154964178017, 26808748399424, 4637914193131397, 802359177063002883, 138808137875405711404, 24013807852839123742907]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-403}) \) |
$C_2$ |
simple |
| 1.173.aq |
$1$ |
$\F_{173}$ |
$173$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 16 x + 173 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$158$ |
$[158, 30020, 5181926, 895796800, 154963992238, 26808745980260, 4637914191497206, 802359177588691200, 138808137885512528318, 24013807852910846884100]$ |
$158$ |
$[158, 30020, 5181926, 895796800, 154963992238, 26808745980260, 4637914191497206, 802359177588691200, 138808137885512528318, 24013807852910846884100]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-109}) \) |
$C_2$ |
simple |
| 1.173.ap |
$1$ |
$\F_{173}$ |
$173$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 15 x + 173 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$159$ |
$[159, 30051, 5182128, 895790259, 154963807419, 26808744239424, 4637914204710183, 802359178223004675, 138808137893628785904, 24013807852913705849211]$ |
$159$ |
$[159, 30051, 5182128, 895790259, 154963807419, 26808744239424, 4637914204710183, 802359178223004675, 138808137893628785904, 24013807852913705849211]$ |
$7$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-467}) \) |
$C_2$ |
simple |
| 1.173.ao |
$1$ |
$\F_{173}$ |
$173$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 14 x + 173 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$160$ |
$[160, 30080, 5182240, 895782400, 154963632800, 26808743239040, 4637914230006560, 802359178871961600, 138808137898590996640, 24013807852853642326400]$ |
$160$ |
$[160, 30080, 5182240, 895782400, 154963632800, 26808743239040, 4637914230006560, 802359178871961600, 138808137898590996640, 24013807852853642326400]$ |
$12$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-31}) \) |
$C_2$ |
simple |
| 1.173.an |
$1$ |
$\F_{173}$ |
$173$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 13 x + 173 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$161$ |
$[161, 30107, 5182268, 895773571, 154963475821, 26808742985024, 4637914263954769, 802359179453677923, 138808137899884398764, 24013807852747592494307]$ |
$161$ |
$[161, 30107, 5182268, 895773571, 154963475821, 26808742985024, 4637914263954769, 802359179453677923, 138808137899884398764, 24013807852747592494307]$ |
$5$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-523}) \) |
$C_2$ |
simple |
| 1.173.am |
$1$ |
$\F_{173}$ |
$173$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 12 x + 173 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$162$ |
$[162, 30132, 5182218, 895764096, 154963342242, 26808743437524, 4637914302841002, 802359179904526848, 138808137897589681314, 24013807852618538482932]$ |
$162$ |
$[162, 30132, 5182218, 895764096, 154963342242, 26808743437524, 4637914302841002, 802359179904526848, 138808137897589681314, 24013807852618538482932]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-137}) \) |
$C_2$ |
simple |
| 1.173.al |
$1$ |
$\F_{173}$ |
$173$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 11 x + 173 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$163$ |
$[163, 30155, 5182096, 895754275, 154963236263, 26808744520640, 4637914342984211, 802359180182333475, 138808137892272343888, 24013807852490761404275]$ |
$163$ |
$[163, 30155, 5182096, 895754275, 154963236263, 26808744520640, 4637914342984211, 802359180182333475, 138808137892272343888, 24013807852490761404275]$ |
$5$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-571}) \) |
$C_2$ |
simple |
| 1.173.ak |
$1$ |
$\F_{173}$ |
$173$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 10 x + 173 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$164$ |
$[164, 30176, 5181908, 895744384, 154963160644, 26808746131424, 4637914380985588, 802359180267148800, 138808137884840017124, 24013807852385856602336]$ |
$164$ |
$[164, 30176, 5181908, 895744384, 154963160644, 26808746131424, 4637914380985588, 802359180267148800, 138808137884840017124, 24013807852385856602336]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-37}) \) |
$C_2$ |
simple |
| 1.173.aj |
$1$ |
$\F_{173}$ |
$173$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 9 x + 173 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$165$ |
$[165, 30195, 5181660, 895734675, 154963116825, 26808748148160, 4637914413917565, 802359180160107075, 138808137876388352460, 24013807852319833682475]$ |
$165$ |
$[165, 30195, 5181660, 895734675, 154963116825, 26808748148160, 4637914413917565, 802359180160107075, 138808137876388352460, 24013807852319833682475]$ |
$10$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-611}) \) |
$C_2$ |
simple |
| 1.173.ai |
$1$ |
$\F_{173}$ |
$173$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 8 x + 173 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$166$ |
$[166, 30212, 5181358, 895725376, 154963105046, 26808750437924, 4637914439457374, 802359179880830208, 138808137868051735174, 24013807852301431150532]$ |
$166$ |
$[166, 30212, 5181358, 895725376, 154963105046, 26808750437924, 4637914439457374, 802359179880830208, 138808137868051735174, 24013807852301431150532]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-157}) \) |
$C_2$ |
simple |
| 1.173.ah |
$1$ |
$\F_{173}$ |
$173$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 7 x + 173 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$167$ |
$[167, 30227, 5181008, 895716691, 154963124467, 26808752863424, 4637914455970207, 802359179463802563, 138808137860871083024, 24013807852331624493707]$ |
$167$ |
$[167, 30227, 5181008, 895716691, 154963124467, 26808752863424, 4637914455970207, 802359179463802563, 138808137860871083024, 24013807852331624493707]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-643}) \) |
$C_2$ |
simple |
| 1.173.ag |
$1$ |
$\F_{173}$ |
$173$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 6 x + 173 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$168$ |
$[168, 30240, 5180616, 895708800, 154963173288, 26808755289120, 4637914462547016, 802359178954099200, 138808137855687364008, 24013807852404193639200]$ |
$168$ |
$[168, 30240, 5180616, 895708800, 154963173288, 26808755289120, 4637914462547016, 802359178954099200, 138808137855687364008, 24013807852404193639200]$ |
$24$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-41}) \) |
$C_2$ |
simple |
| 1.173.af |
$1$ |
$\F_{173}$ |
$173$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 5 x + 173 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$169$ |
$[169, 30251, 5180188, 895701859, 154963248869, 26808757586624, 4637914459001993, 802359178402810275, 138808137853066200844, 24013807852507137304211]$ |
$169$ |
$[169, 30251, 5180188, 895701859, 154963248869, 26808757586624, 4637914459001993, 802359178402810275, 138808137853066200844, 24013807852507137304211]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-667}) \) |
$C_2$ |
simple |
| 1.173.ae |
$1$ |
$\F_{173}$ |
$173$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 4 x + 173 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$170$ |
$[170, 30260, 5179730, 895696000, 154963347850, 26808759639380, 4637914445834770, 802359177862464000, 138808137853256026730, 24013807852624674173300]$ |
$170$ |
$[170, 30260, 5179730, 895696000, 154963347850, 26808759639380, 4637914445834770, 802359177862464000, 138808137853256026730, 24013807852624674173300]$ |
$7$ |
$0$ |
$4$ |
$4$ |
$1$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
simple |
| 1.173.ad |
$1$ |
$\F_{173}$ |
$173$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 3 x + 173 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$171$ |
$[171, 30267, 5179248, 895691331, 154963466271, 26808761346624, 4637914424162379, 802359177382710243, 138808137856179716784, 24013807852739550477507]$ |
$171$ |
$[171, 30267, 5179248, 895691331, 154963466271, 26808761346624, 4637914424162379, 802359177382710243, 138808137856179716784, 24013807852739550477507]$ |
$5$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-683}) \) |
$C_2$ |
simple |
| 1.173.ac |
$1$ |
$\F_{173}$ |
$173$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 2 x + 173 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$172$ |
$[172, 30272, 5178748, 895687936, 154963599692, 26808762626624, 4637914395626012, 802359177006486528, 138808137861457442284, 24013807852835376775232]$ |
$172$ |
$[172, 30272, 5178748, 895687936, 154963599692, 26808762626624, 4637914395626012, 802359177006486528, 138808137861457442284, 24013807852835376775232]$ |
$10$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-43}) \) |
$C_2$ |
simple |
| 1.173.ab |
$1$ |
$\F_{173}$ |
$173$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - x + 173 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$173$ |
$[173, 30275, 5178236, 895685875, 154963743313, 26808763419200, 4637914362277621, 802359176766847875, 138808137868456680428, 24013807852898739918875]$ |
$173$ |
$[173, 30275, 5178236, 895685875, 154963743313, 26808763419200, 4637914362277621, 802359176766847875, 138808137868456680428, 24013807852898739918875]$ |
$5$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-691}) \) |
$C_2$ |
simple |
| 1.173.a |
$1$ |
$\F_{173}$ |
$173$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 + 173 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$174$ |
$[174, 30276, 5177718, 895685184, 154963892094, 26808763687524, 4637914326451398, 802359176684601600, 138808137876363860814, 24013807852920875704836]$ |
$174$ |
$[174, 30276, 5177718, 895685184, 154963892094, 26808763687524, 4637914326451398, 802359176684601600, 138808137876363860814, 24013807852920875704836]$ |
$14$ |
$0$ |
$1$ |
$1$ |
$2$ |
\(\Q(\sqrt{-173}) \) |
$C_2$ |
simple |
| 1.173.b |
$1$ |
$\F_{173}$ |
$173$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + x + 173 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$175$ |
$[175, 30275, 5177200, 895685875, 154964040875, 26808763419200, 4637914290625175, 802359176766847875, 138808137884271041200, 24013807852898739918875]$ |
$175$ |
$[175, 30275, 5177200, 895685875, 154964040875, 26808763419200, 4637914290625175, 802359176766847875, 138808137884271041200, 24013807852898739918875]$ |
$5$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-691}) \) |
$C_2$ |
simple |
| 1.173.c |
$1$ |
$\F_{173}$ |
$173$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 2 x + 173 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$176$ |
$[176, 30272, 5176688, 895687936, 154964184496, 26808762626624, 4637914257276784, 802359177006486528, 138808137891270279344, 24013807852835376775232]$ |
$176$ |
$[176, 30272, 5176688, 895687936, 154964184496, 26808762626624, 4637914257276784, 802359177006486528, 138808137891270279344, 24013807852835376775232]$ |
$10$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-43}) \) |
$C_2$ |
simple |
| 1.173.d |
$1$ |
$\F_{173}$ |
$173$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 3 x + 173 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$177$ |
$[177, 30267, 5176188, 895691331, 154964317917, 26808761346624, 4637914228740417, 802359177382710243, 138808137896548004844, 24013807852739550477507]$ |
$177$ |
$[177, 30267, 5176188, 895691331, 154964317917, 26808761346624, 4637914228740417, 802359177382710243, 138808137896548004844, 24013807852739550477507]$ |
$5$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-683}) \) |
$C_2$ |
simple |
| 1.173.e |
$1$ |
$\F_{173}$ |
$173$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 4 x + 173 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$178$ |
$[178, 30260, 5175706, 895696000, 154964436338, 26808759639380, 4637914207068026, 802359177862464000, 138808137899471694898, 24013807852624674173300]$ |
$178$ |
$[178, 30260, 5175706, 895696000, 154964436338, 26808759639380, 4637914207068026, 802359177862464000, 138808137899471694898, 24013807852624674173300]$ |
$7$ |
$0$ |
$4$ |
$4$ |
$1$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
simple |
| 1.173.f |
$1$ |
$\F_{173}$ |
$173$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 5 x + 173 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$179$ |
$[179, 30251, 5175248, 895701859, 154964535319, 26808757586624, 4637914193900803, 802359178402810275, 138808137899661520784, 24013807852507137304211]$ |
$179$ |
$[179, 30251, 5175248, 895701859, 154964535319, 26808757586624, 4637914193900803, 802359178402810275, 138808137899661520784, 24013807852507137304211]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-667}) \) |
$C_2$ |
simple |
| 1.173.g |
$1$ |
$\F_{173}$ |
$173$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 6 x + 173 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$180$ |
$[180, 30240, 5174820, 895708800, 154964610900, 26808755289120, 4637914190355780, 802359178954099200, 138808137897040357620, 24013807852404193639200]$ |
$180$ |
$[180, 30240, 5174820, 895708800, 154964610900, 26808755289120, 4637914190355780, 802359178954099200, 138808137897040357620, 24013807852404193639200]$ |
$24$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-41}) \) |
$C_2$ |
simple |
| 1.173.h |
$1$ |
$\F_{173}$ |
$173$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 7 x + 173 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$181$ |
$[181, 30227, 5174428, 895716691, 154964659721, 26808752863424, 4637914196932589, 802359179463802563, 138808137891856638604, 24013807852331624493707]$ |
$181$ |
$[181, 30227, 5174428, 895716691, 154964659721, 26808752863424, 4637914196932589, 802359179463802563, 138808137891856638604, 24013807852331624493707]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-643}) \) |
$C_2$ |
simple |
| 1.173.i |
$1$ |
$\F_{173}$ |
$173$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 8 x + 173 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$182$ |
$[182, 30212, 5174078, 895725376, 154964679142, 26808750437924, 4637914213445422, 802359179880830208, 138808137884675986454, 24013807852301431150532]$ |
$182$ |
$[182, 30212, 5174078, 895725376, 154964679142, 26808750437924, 4637914213445422, 802359179880830208, 138808137884675986454, 24013807852301431150532]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-157}) \) |
$C_2$ |
simple |
| 1.173.j |
$1$ |
$\F_{173}$ |
$173$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 9 x + 173 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$183$ |
$[183, 30195, 5173776, 895734675, 154964667363, 26808748148160, 4637914238985231, 802359180160107075, 138808137876339369168, 24013807852319833682475]$ |
$183$ |
$[183, 30195, 5173776, 895734675, 154964667363, 26808748148160, 4637914238985231, 802359180160107075, 138808137876339369168, 24013807852319833682475]$ |
$10$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-611}) \) |
$C_2$ |
simple |
| 1.173.k |
$1$ |
$\F_{173}$ |
$173$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 10 x + 173 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$184$ |
$[184, 30176, 5173528, 895744384, 154964623544, 26808746131424, 4637914271917208, 802359180267148800, 138808137867887704504, 24013807852385856602336]$ |
$184$ |
$[184, 30176, 5173528, 895744384, 154964623544, 26808746131424, 4637914271917208, 802359180267148800, 138808137867887704504, 24013807852385856602336]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-37}) \) |
$C_2$ |
simple |
| 1.173.l |
$1$ |
$\F_{173}$ |
$173$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 11 x + 173 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$185$ |
$[185, 30155, 5173340, 895754275, 154964547925, 26808744520640, 4637914309918585, 802359180182333475, 138808137860455377740, 24013807852490761404275]$ |
$185$ |
$[185, 30155, 5173340, 895754275, 154964547925, 26808744520640, 4637914309918585, 802359180182333475, 138808137860455377740, 24013807852490761404275]$ |
$5$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-571}) \) |
$C_2$ |
simple |
| 1.173.m |
$1$ |
$\F_{173}$ |
$173$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 12 x + 173 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$186$ |
$[186, 30132, 5173218, 895764096, 154964441946, 26808743437524, 4637914350061794, 802359179904526848, 138808137855138040314, 24013807852618538482932]$ |
$186$ |
$[186, 30132, 5173218, 895764096, 154964441946, 26808743437524, 4637914350061794, 802359179904526848, 138808137855138040314, 24013807852618538482932]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-137}) \) |
$C_2$ |
simple |
| 1.173.n |
$1$ |
$\F_{173}$ |
$173$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 13 x + 173 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$187$ |
$[187, 30107, 5173168, 895773571, 154964308367, 26808742985024, 4637914388948027, 802359179453677923, 138808137852843322864, 24013807852747592494307]$ |
$187$ |
$[187, 30107, 5173168, 895773571, 154964308367, 26808742985024, 4637914388948027, 802359179453677923, 138808137852843322864, 24013807852747592494307]$ |
$5$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-523}) \) |
$C_2$ |
simple |
| 1.173.o |
$1$ |
$\F_{173}$ |
$173$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 14 x + 173 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$188$ |
$[188, 30080, 5173196, 895782400, 154964151388, 26808743239040, 4637914422896236, 802359178871961600, 138808137854136724988, 24013807852853642326400]$ |
$188$ |
$[188, 30080, 5173196, 895782400, 154964151388, 26808743239040, 4637914422896236, 802359178871961600, 138808137854136724988, 24013807852853642326400]$ |
$12$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-31}) \) |
$C_2$ |
simple |
| 1.173.p |
$1$ |
$\F_{173}$ |
$173$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 15 x + 173 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$189$ |
$[189, 30051, 5173308, 895790259, 154963976769, 26808744239424, 4637914448192613, 802359178223004675, 138808137859098935724, 24013807852913705849211]$ |
$189$ |
$[189, 30051, 5173308, 895790259, 154963976769, 26808744239424, 4637914448192613, 802359178223004675, 138808137859098935724, 24013807852913705849211]$ |
$7$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-467}) \) |
$C_2$ |
simple |
| 1.173.q |
$1$ |
$\F_{173}$ |
$173$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 16 x + 173 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$190$ |
$[190, 30020, 5173510, 895796800, 154963791950, 26808745980260, 4637914461405590, 802359177588691200, 138808137867215193310, 24013807852910846884100]$ |
$190$ |
$[190, 30020, 5173510, 895796800, 154963791950, 26808745980260, 4637914461405590, 802359177588691200, 138808137867215193310, 24013807852910846884100]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-109}) \) |
$C_2$ |
simple |
| 1.173.r |
$1$ |
$\F_{173}$ |
$173$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 17 x + 173 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$191$ |
$[191, 29987, 5173808, 895801651, 154963606171, 26808748399424, 4637914459771399, 802359177063002883, 138808137877322010224, 24013807852839123742907]$ |
$191$ |
$[191, 29987, 5173808, 895801651, 154963606171, 26808748399424, 4637914459771399, 802359177063002883, 138808137877322010224, 24013807852839123742907]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-403}) \) |
$C_2$ |
simple |
| 1.173.s |
$1$ |
$\F_{173}$ |
$173$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 18 x + 173 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$192$ |
$[192, 29952, 5174208, 895804416, 154963430592, 26808751367424, 4637914441655232, 802359176742309888, 138808137887641669824, 24013807852707891608832]$ |
$192$ |
$[192, 29952, 5174208, 895804416, 154963430592, 26808751367424, 4637914441655232, 802359176742309888, 138808137887641669824, 24013807852707891608832]$ |
$12$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-23}) \) |
$C_2$ |
simple |
| 1.173.t |
$1$ |
$\F_{173}$ |
$173$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 19 x + 173 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$193$ |
$[193, 29915, 5174716, 895804675, 154963278413, 26808754675520, 4637914407093041, 802359176711487075, 138808137895940344108, 24013807852544271335075]$ |
$193$ |
$[193, 29915, 5174716, 895804675, 154963278413, 26808754675520, 4637914407093041, 802359176711487075, 138808137895940344108, 24013807852544271335075]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-331}) \) |
$C_2$ |
simple |
| 1.173.u |
$1$ |
$\F_{173}$ |
$173$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 20 x + 173 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$194$ |
$[194, 29876, 5175338, 895801984, 154963164994, 26808758023124, 4637914358419018, 802359177025190400, 138808137899851488194, 24013807852392201294836]$ |
$194$ |
$[194, 29876, 5175338, 895801984, 154963164994, 26808758023124, 4637914358419018, 802359177025190400, 138808137899851488194, 24013807852392201294836]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-73}) \) |
$C_2$ |
simple |
| 1.173.v |
$1$ |
$\F_{173}$ |
$173$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 21 x + 173 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$195$ |
$[195, 29835, 5176080, 895795875, 154963107975, 26808761004480, 4637914300983795, 802359177683587875, 138808137897412336080, 24013807852306033098675]$ |
$195$ |
$[195, 29835, 5176080, 895795875, 154963107975, 26808761004480, 4637914300983795, 802359177683587875, 138808137897412336080, 24013807852306033098675]$ |
$7$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-251}) \) |
$C_2$ |
simple |
| 1.173.w |
$1$ |
$\F_{173}$ |
$173$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 22 x + 173 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$196$ |
$[196, 29792, 5176948, 895785856, 154963127396, 26808763094624, 4637914243968404, 802359178601799168, 138808137887867854084, 24013807852336112673632]$ |
$196$ |
$[196, 29792, 5176948, 895785856, 154963127396, 26808763094624, 4637914243968404, 802359178601799168, 138808137887867854084, 24013807852336112673632]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-13}) \) |
$C_2$ |
simple |
| 1.173.x |
$1$ |
$\F_{173}$ |
$173$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 23 x + 173 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$197$ |
$[197, 29747, 5177948, 895771411, 154963245817, 26808763634624, 4637914201299037, 802359179572257603, 138808137872803403084, 24013807852503201744107]$ |
$197$ |
$[197, 29747, 5177948, 895771411, 154963245817, 26808763634624, 4637914201299037, 802359179572257603, 138808137872803403084, 24013807852503201744107]$ |
$1$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-163}) \) |
$C_2$ |
simple |