| Label |
Dimension |
Base field |
Base char. |
Simple |
Geom. simple |
Primitive |
Ordinary |
Almost ordinary |
Supersingular |
Princ. polarizable |
Jacobian |
L-polynomial |
Newton slopes |
Newton elevation |
$p$-rank |
$p$-corank |
Angle rank |
Angle corank |
$\mathbb{F}_q$ points on curve |
$\mathbb{F}_{q^k}$ points on curve |
$\mathbb{F}_q$ points on variety |
$\mathbb{F}_{q^k}$ points on variety |
Jacobians |
Hyperelliptic Jacobians |
Num. twists |
Max. twist degree |
End. degree |
Number fields |
Galois groups |
Isogeny factors |
| 1.167.az |
$1$ |
$\F_{167}$ |
$167$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 25 x + 167 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$143$ |
$[143, 27599, 4654364, 777767419, 129891780733, 21691961301296, 3622557613430899, 604967117681344275, 101029508546032957748, 16871927925146905364039]$ |
$143$ |
$[143, 27599, 4654364, 777767419, 129891780733, 21691961301296, 3622557613430899, 604967117681344275, 101029508546032957748, 16871927925146905364039]$ |
$1$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-43}) \) |
$C_2$ |
simple |
| 1.167.ay |
$1$ |
$\F_{167}$ |
$167$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 24 x + 167 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$144$ |
$[144, 27648, 4655664, 777793536, 129892219344, 21691967671296, 3622557693357936, 604967118508965888, 101029508551827852048, 16871927925134246611968]$ |
$144$ |
$[144, 27648, 4655664, 777793536, 129892219344, 21691967671296, 3622557693357936, 604967118508965888, 101029508551827852048, 16871927925134246611968]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-23}) \) |
$C_2$ |
simple |
| 1.167.ax |
$1$ |
$\F_{167}$ |
$167$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 23 x + 167 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$145$ |
$[145, 27695, 4656820, 777814075, 129892501475, 21691970496560, 3622557705148205, 604967118201558675, 101029508541240680380, 16871927924922760367975]$ |
$145$ |
$[145, 27695, 4656820, 777814075, 129892501475, 21691970496560, 3622557705148205, 604967118201558675, 101029508541240680380, 16871927924922760367975]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-139}) \) |
$C_2$ |
simple |
| 1.167.aw |
$1$ |
$\F_{167}$ |
$167$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 22 x + 167 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$146$ |
$[146, 27740, 4657838, 777829600, 129892655266, 21691970771420, 3622557676611838, 604967117409302400, 101029508527336191986, 16871927924740437292700]$ |
$146$ |
$[146, 27740, 4657838, 777829600, 129892655266, 21691970771420, 3622557676611838, 604967117409302400, 101029508527336191986, 16871927924740437292700]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-46}) \) |
$C_2$ |
simple |
| 1.167.av |
$1$ |
$\F_{167}$ |
$167$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 21 x + 167 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$147$ |
$[147, 27783, 4658724, 777840651, 129892706097, 21691969323696, 3622557628545807, 604967116551667443, 101029508516904717708, 16871927924669774730543]$ |
$147$ |
$[147, 27783, 4658724, 777840651, 129892706097, 21691969323696, 3622557628545807, 604967116551667443, 101029508516904717708, 16871927924669774730543]$ |
$5$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-227}) \) |
$C_2$ |
simple |
| 1.167.au |
$1$ |
$\F_{167}$ |
$167$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 20 x + 167 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$148$ |
$[148, 27824, 4659484, 777847744, 129892676708, 21691966830896, 3622557575870444, 604967115872505600, 101029508512527734068, 16871927924711259919664]$ |
$148$ |
$[148, 27824, 4659484, 777847744, 129892676708, 21691966830896, 3622557575870444, 604967115872505600, 101029508512527734068, 16871927924711259919664]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-67}) \) |
$C_2$ |
simple |
| 1.167.at |
$1$ |
$\F_{167}$ |
$167$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 19 x + 167 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$149$ |
$[149, 27863, 4660124, 777851371, 129892587319, 21691963835696, 3622557528655081, 604967115486335283, 101029508514164093108, 16871927924826823002143]$ |
$149$ |
$[149, 27863, 4660124, 777851371, 129892587319, 21691963835696, 3622557528655081, 604967115486335283, 101029508514164093108, 16871927924826823002143]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-307}) \) |
$C_2$ |
simple |
| 1.167.as |
$1$ |
$\F_{167}$ |
$167$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 18 x + 167 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$150$ |
$[150, 27900, 4660650, 777852000, 129892455750, 21691960760700, 3622557493037850, 604967115416688000, 101029508520333319350, 16871927924967845629500]$ |
$150$ |
$[150, 27900, 4660650, 777852000, 129892455750, 21691960760700, 3622557493037850, 604967115416688000, 101029508520333319350, 16871927924967845629500]$ |
$10$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-86}) \) |
$C_2$ |
simple |
| 1.167.ar |
$1$ |
$\F_{167}$ |
$167$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 17 x + 167 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$151$ |
$[151, 27935, 4661068, 777850075, 129892297541, 21691957922480, 3622557472044683, 604967115627342675, 101029508528964754756, 16871927925091576933175]$ |
$151$ |
$[151, 27935, 4661068, 777850075, 129892297541, 21691957922480, 3622557472044683, 604967115627342675, 101029508528964754756, 16871927925091576933175]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-379}) \) |
$C_2$ |
simple |
| 1.167.aq |
$1$ |
$\F_{167}$ |
$167$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 16 x + 167 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$152$ |
$[152, 27968, 4661384, 777846016, 129892126072, 21691955544896, 3622557466312552, 604967116047234048, 101029508537974074968, 16871927925169148994368]$ |
$152$ |
$[152, 27968, 4661384, 777846016, 129892126072, 21691955544896, 3622557466312552, 604967116047234048, 101029508537974074968, 16871927925169148994368]$ |
$10$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-103}) \) |
$C_2$ |
simple |
| 1.167.ap |
$1$ |
$\F_{167}$ |
$167$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 15 x + 167 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$153$ |
$[153, 27999, 4661604, 777840219, 129891952683, 21691953771696, 3622557474721989, 604967116589781075, 101029508545621805388, 16871927925187795074039]$ |
$153$ |
$[153, 27999, 4661604, 777840219, 129891952683, 21691953771696, 3622557474721989, 604967116589781075, 101029508545621805388, 16871927925187795074039]$ |
$5$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-443}) \) |
$C_2$ |
simple |
| 1.167.ao |
$1$ |
$\F_{167}$ |
$167$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 14 x + 167 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$154$ |
$[154, 28028, 4661734, 777833056, 129891786794, 21691952678396, 3622557494943926, 604967117167340928, 101029508550701933818, 16871927925149352123068]$ |
$154$ |
$[154, 28028, 4661734, 777833056, 129891786794, 21691952678396, 3622557494943926, 604967117167340928, 101029508550701933818, 16871927925149352123068]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-118}) \) |
$C_2$ |
simple |
| 1.167.an |
$1$ |
$\F_{167}$ |
$167$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 13 x + 167 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$155$ |
$[155, 28055, 4661780, 777824875, 129891636025, 21691952283440, 3622557523905895, 604967117701453875, 101029508552602547420, 16871927925066670855775]$ |
$155$ |
$[155, 28055, 4661780, 777824875, 129891636025, 21691952283440, 3622557523905895, 604967117701453875, 101029508552602547420, 16871927925066670855775]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-499}) \) |
$C_2$ |
simple |
| 1.167.am |
$1$ |
$\F_{167}$ |
$167$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 12 x + 167 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$156$ |
$[156, 28080, 4661748, 777816000, 129891506316, 21691952558640, 3622557558182628, 604967118129504000, 101029508551274615676, 16871927924959158308400]$ |
$156$ |
$[156, 28080, 4661748, 777816000, 129891506316, 21691952558640, 3622557558182628, 604967118129504000, 101029508551274615676, 16871927924959158308400]$ |
$20$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-131}) \) |
$C_2$ |
simple |
| 1.167.al |
$1$ |
$\F_{167}$ |
$167$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 11 x + 167 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$157$ |
$[157, 28103, 4661644, 777806731, 129891402047, 21691953438896, 3622557594316097, 604967118408380403, 101029508547139597828, 16871927924848335688943]$ |
$157$ |
$[157, 28103, 4661644, 777806731, 129891402047, 21691953438896, 3622557594316097, 604967118408380403, 101029508547139597828, 16871927924848335688943]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-547}) \) |
$C_2$ |
simple |
| 1.167.ak |
$1$ |
$\F_{167}$ |
$167$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 10 x + 167 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$158$ |
$[158, 28124, 4661474, 777797344, 129891326158, 21691954831196, 3622557629070034, 604967118515683200, 101029508540961472958, 16871927924754004827164]$ |
$158$ |
$[158, 28124, 4661474, 777797344, 129891326158, 21691954831196, 3622557629070034, 604967118515683200, 101029508540961472958, 16871927924754004827164]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-142}) \) |
$C_2$ |
simple |
| 1.167.aj |
$1$ |
$\F_{167}$ |
$167$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 9 x + 167 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$159$ |
$[159, 28143, 4661244, 777788091, 129891280269, 21691956622896, 3622557659623971, 604967118448978323, 101029508533704073428, 16871927924691376024743]$ |
$159$ |
$[159, 28143, 4661244, 777788091, 129891280269, 21691956622896, 3622557659623971, 604967118448978323, 101029508533704073428, 16871927924691376024743]$ |
$7$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-587}) \) |
$C_2$ |
simple |
| 1.167.ai |
$1$ |
$\F_{167}$ |
$167$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 8 x + 167 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$160$ |
$[160, 28160, 4660960, 777779200, 129891264800, 21691958689280, 3622557683711840, 604967118223564800, 101029508526390247840, 16871927924669314956800]$ |
$160$ |
$[160, 28160, 4660960, 777779200, 129891264800, 21691958689280, 3622557683711840, 604967118223564800, 101029508526390247840, 16871927924669314956800]$ |
$14$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-151}) \) |
$C_2$ |
simple |
| 1.167.ah |
$1$ |
$\F_{167}$ |
$167$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 7 x + 167 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$161$ |
$[161, 28175, 4660628, 777770875, 129891279091, 21691960900400, 3622557699710173, 604967117869177875, 101029508519975387996, 16871927924689712858375]$ |
$161$ |
$[161, 28175, 4660628, 777770875, 129891279091, 21691960900400, 3622557699710173, 604967117869177875, 101029508519975387996, 16871927924689712858375]$ |
$5$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-619}) \) |
$C_2$ |
simple |
| 1.167.ag |
$1$ |
$\F_{167}$ |
$167$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 6 x + 167 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$162$ |
$[162, 28188, 4660254, 777763296, 129891321522, 21691963127196, 3622557706680942, 604967117426011008, 101029508515244225538, 16871927924747868914268]$ |
$162$ |
$[162, 28188, 4660254, 777763296, 129891321522, 21691963127196, 3622557706680942, 604967117426011008, 101029508515244225538, 16871927924747868914268]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-158}) \) |
$C_2$ |
simple |
| 1.167.af |
$1$ |
$\F_{167}$ |
$167$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 5 x + 167 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$163$ |
$[163, 28199, 4659844, 777756619, 129891389633, 21691965246896, 3622557704374079, 604967116940399475, 101029508512736538028, 16871927924833692929039]$ |
$163$ |
$[163, 28199, 4659844, 777756619, 129891389633, 21691965246896, 3622557704374079, 604967116940399475, 101029508512736538028, 16871927924833692929039]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-643}) \) |
$C_2$ |
simple |
| 1.167.ae |
$1$ |
$\F_{167}$ |
$167$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 4 x + 167 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$164$ |
$[164, 28208, 4659404, 777750976, 129891480244, 21691967147696, 3622557693194716, 604967116460467968, 101029508512704501188, 16871927924933486357168]$ |
$164$ |
$[164, 28208, 4659404, 777750976, 129891480244, 21691967147696, 3622557693194716, 604967116460467968, 101029508512704501188, 16871927924933486357168]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-163}) \) |
$C_2$ |
simple |
| 1.167.ad |
$1$ |
$\F_{167}$ |
$167$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 3 x + 167 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$165$ |
$[165, 28215, 4658940, 777746475, 129891589575, 21691968732720, 3622557674140185, 604967116032004275, 101029508515101883860, 16871927925032036992575]$ |
$165$ |
$[165, 28215, 4658940, 777746475, 129891589575, 21691968732720, 3622557674140185, 604967116032004275, 101029508515101883860, 16871927925032036992575]$ |
$11$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-659}) \) |
$C_2$ |
simple |
| 1.167.ac |
$1$ |
$\F_{167}$ |
$167$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 2 x + 167 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$166$ |
$[166, 28220, 4658458, 777743200, 129891713366, 21691969923260, 3622557648711818, 604967115694780800, 101029508519603104966, 16871927925114763423100]$ |
$166$ |
$[166, 28220, 4658458, 777743200, 129891713366, 21691969923260, 3622557648711818, 604967115694780800, 101029508519603104966, 16871927925114763423100]$ |
$10$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-166}) \) |
$C_2$ |
simple |
| 1.167.ab |
$1$ |
$\F_{167}$ |
$167$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - x + 167 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$167$ |
$[167, 28223, 4657964, 777741211, 129891846997, 21691970661296, 3622557618806587, 604967115479505363, 101029508525648357348, 16871927925169666120343]$ |
$167$ |
$[167, 28223, 4657964, 777741211, 129891846997, 21691970661296, 3622557618806587, 604967115479505363, 101029508525648357348, 16871927925169666120343]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-667}) \) |
$C_2$ |
simple |
| 1.167.a |
$1$ |
$\F_{167}$ |
$167$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 + 167 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$168$ |
$[168, 28224, 4657464, 777740544, 129891985608, 21691970911296, 3622557586593624, 604967115405542400, 101029508532509551848, 16871927925188879129664]$ |
$168$ |
$[168, 28224, 4657464, 777740544, 129891985608, 21691970911296, 3622557586593624, 604967115405542400, 101029508532509551848, 16871927925188879129664]$ |
$22$ |
$0$ |
$1$ |
$1$ |
$2$ |
\(\Q(\sqrt{-167}) \) |
$C_2$ |
simple |
| 1.167.b |
$1$ |
$\F_{167}$ |
$167$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + x + 167 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$169$ |
$[169, 28223, 4656964, 777741211, 129892124219, 21691970661296, 3622557554380661, 604967115479505363, 101029508539370746348, 16871927925169666120343]$ |
$169$ |
$[169, 28223, 4656964, 777741211, 129892124219, 21691970661296, 3622557554380661, 604967115479505363, 101029508539370746348, 16871927925169666120343]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-667}) \) |
$C_2$ |
simple |
| 1.167.c |
$1$ |
$\F_{167}$ |
$167$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 2 x + 167 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$170$ |
$[170, 28220, 4656470, 777743200, 129892257850, 21691969923260, 3622557524475430, 604967115694780800, 101029508545415998730, 16871927925114763423100]$ |
$170$ |
$[170, 28220, 4656470, 777743200, 129892257850, 21691969923260, 3622557524475430, 604967115694780800, 101029508545415998730, 16871927925114763423100]$ |
$10$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-166}) \) |
$C_2$ |
simple |
| 1.167.d |
$1$ |
$\F_{167}$ |
$167$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 3 x + 167 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$171$ |
$[171, 28215, 4655988, 777746475, 129892381641, 21691968732720, 3622557499047063, 604967116032004275, 101029508549917219836, 16871927925032036992575]$ |
$171$ |
$[171, 28215, 4655988, 777746475, 129892381641, 21691968732720, 3622557499047063, 604967116032004275, 101029508549917219836, 16871927925032036992575]$ |
$11$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-659}) \) |
$C_2$ |
simple |
| 1.167.e |
$1$ |
$\F_{167}$ |
$167$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 4 x + 167 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$172$ |
$[172, 28208, 4655524, 777750976, 129892490972, 21691967147696, 3622557479992532, 604967116460467968, 101029508552314602508, 16871927924933486357168]$ |
$172$ |
$[172, 28208, 4655524, 777750976, 129892490972, 21691967147696, 3622557479992532, 604967116460467968, 101029508552314602508, 16871927924933486357168]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-163}) \) |
$C_2$ |
simple |
| 1.167.f |
$1$ |
$\F_{167}$ |
$167$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 5 x + 167 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$173$ |
$[173, 28199, 4655084, 777756619, 129892581583, 21691965246896, 3622557468813169, 604967116940399475, 101029508552282565668, 16871927924833692929039]$ |
$173$ |
$[173, 28199, 4655084, 777756619, 129892581583, 21691965246896, 3622557468813169, 604967116940399475, 101029508552282565668, 16871927924833692929039]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-643}) \) |
$C_2$ |
simple |
| 1.167.g |
$1$ |
$\F_{167}$ |
$167$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 6 x + 167 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$174$ |
$[174, 28188, 4654674, 777763296, 129892649694, 21691963127196, 3622557466506306, 604967117426011008, 101029508549774878158, 16871927924747868914268]$ |
$174$ |
$[174, 28188, 4654674, 777763296, 129892649694, 21691963127196, 3622557466506306, 604967117426011008, 101029508549774878158, 16871927924747868914268]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-158}) \) |
$C_2$ |
simple |
| 1.167.h |
$1$ |
$\F_{167}$ |
$167$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 7 x + 167 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$175$ |
$[175, 28175, 4654300, 777770875, 129892692125, 21691960900400, 3622557473477075, 604967117869177875, 101029508545043715700, 16871927924689712858375]$ |
$175$ |
$[175, 28175, 4654300, 777770875, 129892692125, 21691960900400, 3622557473477075, 604967117869177875, 101029508545043715700, 16871927924689712858375]$ |
$5$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-619}) \) |
$C_2$ |
simple |
| 1.167.i |
$1$ |
$\F_{167}$ |
$167$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 8 x + 167 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$176$ |
$[176, 28160, 4653968, 777779200, 129892706416, 21691958689280, 3622557489475408, 604967118223564800, 101029508538628855856, 16871927924669314956800]$ |
$176$ |
$[176, 28160, 4653968, 777779200, 129892706416, 21691958689280, 3622557489475408, 604967118223564800, 101029508538628855856, 16871927924669314956800]$ |
$14$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-151}) \) |
$C_2$ |
simple |
| 1.167.j |
$1$ |
$\F_{167}$ |
$167$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 9 x + 167 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$177$ |
$[177, 28143, 4653684, 777788091, 129892690947, 21691956622896, 3622557513563277, 604967118448978323, 101029508531315030268, 16871927924691376024743]$ |
$177$ |
$[177, 28143, 4653684, 777788091, 129892690947, 21691956622896, 3622557513563277, 604967118448978323, 101029508531315030268, 16871927924691376024743]$ |
$7$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-587}) \) |
$C_2$ |
simple |
| 1.167.k |
$1$ |
$\F_{167}$ |
$167$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 10 x + 167 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$178$ |
$[178, 28124, 4653454, 777797344, 129892645058, 21691954831196, 3622557544117214, 604967118515683200, 101029508524057630738, 16871927924754004827164]$ |
$178$ |
$[178, 28124, 4653454, 777797344, 129892645058, 21691954831196, 3622557544117214, 604967118515683200, 101029508524057630738, 16871927924754004827164]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-142}) \) |
$C_2$ |
simple |
| 1.167.l |
$1$ |
$\F_{167}$ |
$167$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 11 x + 167 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$179$ |
$[179, 28103, 4653284, 777806731, 129892569169, 21691953438896, 3622557578871151, 604967118408380403, 101029508517879505868, 16871927924848335688943]$ |
$179$ |
$[179, 28103, 4653284, 777806731, 129892569169, 21691953438896, 3622557578871151, 604967118408380403, 101029508517879505868, 16871927924848335688943]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-547}) \) |
$C_2$ |
simple |
| 1.167.m |
$1$ |
$\F_{167}$ |
$167$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 12 x + 167 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$180$ |
$[180, 28080, 4653180, 777816000, 129892464900, 21691952558640, 3622557615004620, 604967118129504000, 101029508513744488020, 16871927924959158308400]$ |
$180$ |
$[180, 28080, 4653180, 777816000, 129892464900, 21691952558640, 3622557615004620, 604967118129504000, 101029508513744488020, 16871927924959158308400]$ |
$20$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-131}) \) |
$C_2$ |
simple |
| 1.167.n |
$1$ |
$\F_{167}$ |
$167$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 13 x + 167 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$181$ |
$[181, 28055, 4653148, 777824875, 129892335191, 21691952283440, 3622557649281353, 604967117701453875, 101029508512416556276, 16871927925066670855775]$ |
$181$ |
$[181, 28055, 4653148, 777824875, 129892335191, 21691952283440, 3622557649281353, 604967117701453875, 101029508512416556276, 16871927925066670855775]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-499}) \) |
$C_2$ |
simple |
| 1.167.o |
$1$ |
$\F_{167}$ |
$167$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 14 x + 167 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$182$ |
$[182, 28028, 4653194, 777833056, 129892184422, 21691952678396, 3622557678243322, 604967117167340928, 101029508514317169878, 16871927925149352123068]$ |
$182$ |
$[182, 28028, 4653194, 777833056, 129892184422, 21691952678396, 3622557678243322, 604967117167340928, 101029508514317169878, 16871927925149352123068]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-118}) \) |
$C_2$ |
simple |
| 1.167.p |
$1$ |
$\F_{167}$ |
$167$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 15 x + 167 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$183$ |
$[183, 27999, 4653324, 777840219, 129892018533, 21691953771696, 3622557698465259, 604967116589781075, 101029508519397298308, 16871927925187795074039]$ |
$183$ |
$[183, 27999, 4653324, 777840219, 129892018533, 21691953771696, 3622557698465259, 604967116589781075, 101029508519397298308, 16871927925187795074039]$ |
$5$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-443}) \) |
$C_2$ |
simple |
| 1.167.q |
$1$ |
$\F_{167}$ |
$167$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 16 x + 167 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$184$ |
$[184, 27968, 4653544, 777846016, 129891845144, 21691955544896, 3622557706874696, 604967116047234048, 101029508527045028728, 16871927925169148994368]$ |
$184$ |
$[184, 27968, 4653544, 777846016, 129891845144, 21691955544896, 3622557706874696, 604967116047234048, 101029508527045028728, 16871927925169148994368]$ |
$10$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-103}) \) |
$C_2$ |
simple |
| 1.167.r |
$1$ |
$\F_{167}$ |
$167$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 17 x + 167 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$185$ |
$[185, 27935, 4653860, 777850075, 129891673675, 21691957922480, 3622557701142565, 604967115627342675, 101029508536054348940, 16871927925091576933175]$ |
$185$ |
$[185, 27935, 4653860, 777850075, 129891673675, 21691957922480, 3622557701142565, 604967115627342675, 101029508536054348940, 16871927925091576933175]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-379}) \) |
$C_2$ |
simple |
| 1.167.s |
$1$ |
$\F_{167}$ |
$167$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 18 x + 167 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$186$ |
$[186, 27900, 4654278, 777852000, 129891515466, 21691960760700, 3622557680149398, 604967115416688000, 101029508544685784346, 16871927924967845629500]$ |
$186$ |
$[186, 27900, 4654278, 777852000, 129891515466, 21691960760700, 3622557680149398, 604967115416688000, 101029508544685784346, 16871927924967845629500]$ |
$10$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-86}) \) |
$C_2$ |
simple |
| 1.167.t |
$1$ |
$\F_{167}$ |
$167$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 19 x + 167 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$187$ |
$[187, 27863, 4654804, 777851371, 129891383897, 21691963835696, 3622557644532167, 604967115486335283, 101029508550855010588, 16871927924826823002143]$ |
$187$ |
$[187, 27863, 4654804, 777851371, 129891383897, 21691963835696, 3622557644532167, 604967115486335283, 101029508550855010588, 16871927924826823002143]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-307}) \) |
$C_2$ |
simple |
| 1.167.u |
$1$ |
$\F_{167}$ |
$167$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 20 x + 167 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$188$ |
$[188, 27824, 4655444, 777847744, 129891294508, 21691966830896, 3622557597316804, 604967115872505600, 101029508552491369628, 16871927924711259919664]$ |
$188$ |
$[188, 27824, 4655444, 777847744, 129891294508, 21691966830896, 3622557597316804, 604967115872505600, 101029508552491369628, 16871927924711259919664]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-67}) \) |
$C_2$ |
simple |
| 1.167.v |
$1$ |
$\F_{167}$ |
$167$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 21 x + 167 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$189$ |
$[189, 27783, 4656204, 777840651, 129891265119, 21691969323696, 3622557544641441, 604967116551667443, 101029508548114385988, 16871927924669774730543]$ |
$189$ |
$[189, 27783, 4656204, 777840651, 129891265119, 21691969323696, 3622557544641441, 604967116551667443, 101029508548114385988, 16871927924669774730543]$ |
$5$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-227}) \) |
$C_2$ |
simple |
| 1.167.w |
$1$ |
$\F_{167}$ |
$167$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 22 x + 167 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$190$ |
$[190, 27740, 4657090, 777829600, 129891315950, 21691970771420, 3622557496575410, 604967117409302400, 101029508537682911710, 16871927924740437292700]$ |
$190$ |
$[190, 27740, 4657090, 777829600, 129891315950, 21691970771420, 3622557496575410, 604967117409302400, 101029508537682911710, 16871927924740437292700]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-46}) \) |
$C_2$ |
simple |
| 1.167.x |
$1$ |
$\F_{167}$ |
$167$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 23 x + 167 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$191$ |
$[191, 27695, 4658108, 777814075, 129891469741, 21691970496560, 3622557468039043, 604967118201558675, 101029508523778423316, 16871927924922760367975]$ |
$191$ |
$[191, 27695, 4658108, 777814075, 129891469741, 21691970496560, 3622557468039043, 604967118201558675, 101029508523778423316, 16871927924922760367975]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-139}) \) |
$C_2$ |
simple |
| 1.167.y |
$1$ |
$\F_{167}$ |
$167$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 24 x + 167 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$192$ |
$[192, 27648, 4659264, 777793536, 129891751872, 21691967671296, 3622557479829312, 604967118508965888, 101029508513191251648, 16871927925134246611968]$ |
$192$ |
$[192, 27648, 4659264, 777793536, 129891751872, 21691967671296, 3622557479829312, 604967118508965888, 101029508513191251648, 16871927925134246611968]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-23}) \) |
$C_2$ |
simple |