| Label |
Dimension |
Base field |
Base char. |
Simple |
Geom. simple |
Primitive |
Ordinary |
Almost ordinary |
Supersingular |
Princ. polarizable |
Jacobian |
L-polynomial |
Newton slopes |
Newton elevation |
$p$-rank |
$p$-corank |
Angle rank |
Angle corank |
$\mathbb{F}_q$ points on curve |
$\mathbb{F}_{q^k}$ points on curve |
$\mathbb{F}_q$ points on variety |
$\mathbb{F}_{q^k}$ points on variety |
Jacobians |
Hyperelliptic Jacobians |
Num. twists |
Max. twist degree |
End. degree |
Number fields |
Galois groups |
Isogeny factors |
| 1.163.az |
$1$ |
$\F_{163}$ |
$163$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 25 x + 163 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$139$ |
$[139, 26271, 4327348, 705875499, 115063264669, 18755366679504, 3057125226189943, 498311414414939475, 81224760538723362124, 13239635967124119157311]$ |
$139$ |
$[139, 26271, 4327348, 705875499, 115063264669, 18755366679504, 3057125226189943, 498311414414939475, 81224760538723362124, 13239635967124119157311]$ |
$2$ |
$0$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
| 1.163.ay |
$1$ |
$\F_{163}$ |
$163$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 24 x + 163 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$140$ |
$[140, 26320, 4328660, 705902400, 115063732700, 18755373879760, 3057125325605540, 498311415642297600, 81224760551878396460, 13239635967234910987600]$ |
$140$ |
$[140, 26320, 4328660, 705902400, 115063732700, 18755373879760, 3057125325605540, 498311415642297600, 81224760551878396460, 13239635967234910987600]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-19}) \) |
$C_2$ |
simple |
| 1.163.ax |
$1$ |
$\F_{163}$ |
$163$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 23 x + 163 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$141$ |
$[141, 26367, 4329828, 705923691, 115064041371, 18755377393104, 3057125351797329, 498311415587643603, 81224760545027916444, 13239635967068233895007]$ |
$141$ |
$[141, 26367, 4329828, 705923691, 115064041371, 18755377393104, 3057125351797329, 498311415587643603, 81224760545027916444, 13239635967068233895007]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-123}) \) |
$C_2$ |
simple |
| 1.163.aw |
$1$ |
$\F_{163}$ |
$163$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 22 x + 163 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$142$ |
$[142, 26412, 4330858, 705939936, 115064218942, 18755378227404, 3057125333392762, 498311414936170368, 81224760532425927214, 13239635966886006095532]$ |
$142$ |
$[142, 26412, 4330858, 705939936, 115064218942, 18755378227404, 3057125333392762, 498311414936170368, 81224760532425927214, 13239635966886006095532]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-42}) \) |
$C_2$ |
simple |
| 1.163.av |
$1$ |
$\F_{163}$ |
$163$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 21 x + 163 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$143$ |
$[143, 26455, 4331756, 705951675, 115064290913, 18755377223440, 3057125291928851, 498311414136897075, 81224760521781756308, 13239635966794187868775]$ |
$143$ |
$[143, 26455, 4331756, 705951675, 115064290913, 18755377223440, 3057125291928851, 498311414136897075, 81224760521781756308, 13239635966794187868775]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-211}) \) |
$C_2$ |
simple |
| 1.163.au |
$1$ |
$\F_{163}$ |
$163$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 20 x + 163 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$144$ |
$[144, 26496, 4332528, 705959424, 115064280144, 18755375071104, 3057125242992048, 498311413458278400, 81224760516367305744, 13239635966808585687936]$ |
$144$ |
$[144, 26496, 4332528, 705959424, 115064280144, 18755375071104, 3057125242992048, 498311413458278400, 81224760516367305744, 13239635966808585687936]$ |
$10$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-7}) \) |
$C_2$ |
simple |
| 1.163.at |
$1$ |
$\F_{163}$ |
$163$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 19 x + 163 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$145$ |
$[145, 26535, 4333180, 705963675, 115064206975, 18755372324880, 3057125197247245, 498311413034985075, 81224760516640978180, 13239635966900268713175]$ |
$145$ |
$[145, 26535, 4333180, 705963675, 115064206975, 18755372324880, 3057125197247245, 498311413034985075, 81224760516640978180, 13239635966900268713175]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-291}) \) |
$C_2$ |
simple |
| 1.163.as |
$1$ |
$\F_{163}$ |
$163$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 18 x + 163 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$146$ |
$[146, 26572, 4333718, 705964896, 115064089346, 18755369418604, 3057125161360934, 498311412906722688, 81224760521464859954, 13239635967025218118732]$ |
$146$ |
$[146, 26572, 4333718, 705964896, 115064089346, 18755369418604, 3057125161360934, 498311412906722688, 81224760521464859954, 13239635967025218118732]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-82}) \) |
$C_2$ |
simple |
| 1.163.ar |
$1$ |
$\F_{163}$ |
$163$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 17 x + 163 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$147$ |
$[147, 26607, 4334148, 705963531, 115063942917, 18755366679504, 3057125138823567, 498311413049915283, 81224760528984123324, 13239635967142094085807]$ |
$147$ |
$[147, 26607, 4334148, 705963531, 115063942917, 18755366679504, 3057125138823567, 498311413049915283, 81224760528984123324, 13239635967142094085807]$ |
$5$ |
$0$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
| 1.163.aq |
$1$ |
$\F_{163}$ |
$163$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 16 x + 163 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$148$ |
$[148, 26640, 4334476, 705960000, 115063781188, 18755364341520, 3057125130676156, 498311413403040000, 81224760537230352628, 13239635967221344045200]$ |
$148$ |
$[148, 26640, 4334476, 705960000, 115063781188, 18755364341520, 3057125130676156, 498311413403040000, 81224760537230352628, 13239635967221344045200]$ |
$12$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-11}) \) |
$C_2$ |
simple |
| 1.163.ap |
$1$ |
$\F_{163}$ |
$163$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 15 x + 163 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$149$ |
$[149, 26671, 4334708, 705954699, 115063615619, 18755362557904, 3057125136146153, 498311413886358675, 81224760544503604364, 13239635967248285267311]$ |
$149$ |
$[149, 26671, 4334708, 705954699, 115063615619, 18755362557904, 3057125136146153, 498311413886358675, 81224760544503604364, 13239635967248285267311]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-427}) \) |
$C_2$ |
simple |
| 1.163.ao |
$1$ |
$\F_{163}$ |
$163$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 14 x + 163 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$150$ |
$[150, 26700, 4334850, 705948000, 115063455750, 18755361413100, 3057125153197650, 498311414416752000, 81224760549581479350, 13239635967222271543500]$ |
$150$ |
$[150, 26700, 4334850, 705948000, 115063455750, 18755361413100, 3057125153197650, 498311414416752000, 81224760549581479350, 13239635967222271543500]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-114}) \) |
$C_2$ |
simple |
| 1.163.an |
$1$ |
$\F_{163}$ |
$163$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 13 x + 163 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$151$ |
$[151, 26727, 4334908, 705940251, 115063309321, 18755360933904, 3057125179000939, 498311414918321523, 81224760551797316164, 13239635967153593853207]$ |
$151$ |
$[151, 26727, 4334908, 705940251, 115063309321, 18755360933904, 3057125179000939, 498311414918321523, 81224760551797316164, 13239635967153593853207]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-483}) \) |
$C_2$ |
simple |
| 1.163.am |
$1$ |
$\F_{163}$ |
$163$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 12 x + 163 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$152$ |
$[152, 26752, 4334888, 705931776, 115063182392, 18755361099904, 3057125210326472, 498311415329384448, 81224760551023808984, 13239635967059364936832]$ |
$152$ |
$[152, 26752, 4334888, 705931776, 115063182392, 18755361099904, 3057125210326472, 498311415329384448, 81224760551023808984, 13239635967059364936832]$ |
$10$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-127}) \) |
$C_2$ |
simple |
| 1.163.al |
$1$ |
$\F_{163}$ |
$163$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 11 x + 163 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$153$ |
$[153, 26775, 4334796, 705922875, 115063079463, 18755361853200, 3057125243868261, 498311415606445875, 81224760547592909748, 13239635966959293966375]$ |
$153$ |
$[153, 26775, 4334796, 705922875, 115063079463, 18755361853200, 3057125243868261, 498311415606445875, 81224760547592909748, 13239635966959293966375]$ |
$9$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-59}) \) |
$C_2$ |
simple |
| 1.163.ak |
$1$ |
$\F_{163}$ |
$163$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 10 x + 163 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$154$ |
$[154, 26796, 4334638, 705913824, 115063003594, 18755363107404, 3057125276501758, 498311415725692800, 81224760542177794234, 13239635966871966395436]$ |
$154$ |
$[154, 26796, 4334638, 705913824, 115063003594, 18755363107404, 3057125276501758, 498311415725692800, 81224760542177794234, 13239635966871966395436]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-138}) \) |
$C_2$ |
simple |
| 1.163.aj |
$1$ |
$\F_{163}$ |
$163$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 9 x + 163 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$155$ |
$[155, 26815, 4334420, 705904875, 115062956525, 18755364755920, 3057125305481255, 498311415682513875, 81224760535657954220, 13239635966812001948575]$ |
$155$ |
$[155, 26815, 4334420, 705904875, 115062956525, 18755364755920, 3057125305481255, 498311415682513875, 81224760535657954220, 13239635966812001948575]$ |
$5$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-571}) \) |
$C_2$ |
simple |
| 1.163.ai |
$1$ |
$\F_{163}$ |
$163$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 8 x + 163 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$156$ |
$[156, 26832, 4334148, 705896256, 115062938796, 18755366679504, 3057125328581844, 498311415489508608, 81224760528984123324, 13239635966788266948432]$ |
$156$ |
$[156, 26832, 4334148, 705896256, 115062938796, 18755366679504, 3057125328581844, 498311415489508608, 81224760528984123324, 13239635966788266948432]$ |
$10$ |
$0$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
| 1.163.ah |
$1$ |
$\F_{163}$ |
$163$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 7 x + 163 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$157$ |
$[157, 26847, 4333828, 705888171, 115062949867, 18755368753104, 3057125344190977, 498311415173409363, 81224760523055752444, 13239635966803162148607]$ |
$157$ |
$[157, 26847, 4333828, 705888171, 115062949867, 18755368753104, 3057125344190977, 498311415173409363, 81224760523055752444, 13239635966803162148607]$ |
$5$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-67}) \) |
$C_2$ |
simple |
| 1.163.ag |
$1$ |
$\F_{163}$ |
$163$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 6 x + 163 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$158$ |
$[158, 26860, 4333466, 705880800, 115062988238, 18755370851980, 3057125351354666, 498311414771299200, 81224760518620121918, 13239635966852890312300]$ |
$158$ |
$[158, 26860, 4333466, 705880800, 115062988238, 18755370851980, 3057125351354666, 498311414771299200, 81224760518620121918, 13239635966852890312300]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-154}) \) |
$C_2$ |
simple |
| 1.163.af |
$1$ |
$\F_{163}$ |
$163$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 5 x + 163 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$159$ |
$[159, 26871, 4333068, 705874299, 115063051569, 18755372857104, 3057125349783363, 498311414326468275, 81224760516198911604, 13239635966928525322311]$ |
$159$ |
$[159, 26871, 4333068, 705874299, 115063051569, 18755372857104, 3057125349783363, 498311414326468275, 81224760516198911604, 13239635966928525322311]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-627}) \) |
$C_2$ |
simple |
| 1.163.ae |
$1$ |
$\F_{163}$ |
$163$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 4 x + 163 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$160$ |
$[160, 26880, 4332640, 705868800, 115063136800, 18755374659840, 3057125339822560, 498311413884211200, 81224760516045147040, 13239635967017652998400]$ |
$160$ |
$[160, 26880, 4332640, 705868800, 115063136800, 18755374659840, 3057125339822560, 498311413884211200, 81224760516045147040, 13239635967017652998400]$ |
$20$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-159}) \) |
$C_2$ |
simple |
| 1.163.ad |
$1$ |
$\F_{163}$ |
$163$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 3 x + 163 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$161$ |
$[161, 26887, 4332188, 705864411, 115063240271, 18755376165904, 3057125322393149, 498311413487827443, 81224760518130899684, 13239635967106329404407]$ |
$161$ |
$[161, 26887, 4332188, 705864411, 115063240271, 18755376165904, 3057125322393149, 498311413487827443, 81224760518130899684, 13239635967106329404407]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-643}) \) |
$C_2$ |
simple |
| 1.163.ac |
$1$ |
$\F_{163}$ |
$163$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 2 x + 163 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$162$ |
$[162, 26892, 4331718, 705861216, 115063357842, 18755377298604, 3057125298906582, 498311413175046528, 81224760522163941954, 13239635967181101621132]$ |
$162$ |
$[162, 26892, 4331718, 705861216, 115063357842, 18755377298604, 3057125298906582, 498311413175046528, 81224760522163941954, 13239635967181101621132]$ |
$9$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-2}) \) |
$C_2$ |
simple |
| 1.163.ab |
$1$ |
$\F_{163}$ |
$163$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - x + 163 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$163$ |
$[163, 26895, 4331236, 705859275, 115063485013, 18755378001360, 3057125271159871, 498311412975059475, 81224760527629743388, 13239635967230855112975]$ |
$163$ |
$[163, 26895, 4331236, 705859275, 115063485013, 18755378001360, 3057125271159871, 498311412975059475, 81224760527629743388, 13239635967230855112975]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-651}) \) |
$C_2$ |
simple |
| 1.163.a |
$1$ |
$\F_{163}$ |
$163$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 + 163 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$164$ |
$[164, 26896, 4330748, 705858624, 115063617044, 18755378239504, 3057125241215468, 498311412906297600, 81224760533853742724, 13239635967248287297936]$ |
$164$ |
$[164, 26896, 4330748, 705858624, 115063617044, 18755378239504, 3057125241215468, 498311412906297600, 81224760533853742724, 13239635967248287297936]$ |
$4$ |
$0$ |
$1$ |
$1$ |
$2$ |
\(\Q(\sqrt{-163}) \) |
$C_2$ |
simple |
| 1.163.b |
$1$ |
$\F_{163}$ |
$163$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + x + 163 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$165$ |
$[165, 26895, 4330260, 705859275, 115063749075, 18755378001360, 3057125211271065, 498311412975059475, 81224760540077742060, 13239635967230855112975]$ |
$165$ |
$[165, 26895, 4330260, 705859275, 115063749075, 18755378001360, 3057125211271065, 498311412975059475, 81224760540077742060, 13239635967230855112975]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-651}) \) |
$C_2$ |
simple |
| 1.163.c |
$1$ |
$\F_{163}$ |
$163$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 2 x + 163 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$166$ |
$[166, 26892, 4329778, 705861216, 115063876246, 18755377298604, 3057125183524354, 498311413175046528, 81224760545543543494, 13239635967181101621132]$ |
$166$ |
$[166, 26892, 4329778, 705861216, 115063876246, 18755377298604, 3057125183524354, 498311413175046528, 81224760545543543494, 13239635967181101621132]$ |
$9$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-2}) \) |
$C_2$ |
simple |
| 1.163.d |
$1$ |
$\F_{163}$ |
$163$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 3 x + 163 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$167$ |
$[167, 26887, 4329308, 705864411, 115063993817, 18755376165904, 3057125160037787, 498311413487827443, 81224760549576585764, 13239635967106329404407]$ |
$167$ |
$[167, 26887, 4329308, 705864411, 115063993817, 18755376165904, 3057125160037787, 498311413487827443, 81224760549576585764, 13239635967106329404407]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-643}) \) |
$C_2$ |
simple |
| 1.163.e |
$1$ |
$\F_{163}$ |
$163$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 4 x + 163 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$168$ |
$[168, 26880, 4328856, 705868800, 115064097288, 18755374659840, 3057125142608376, 498311413884211200, 81224760551662338408, 13239635967017652998400]$ |
$168$ |
$[168, 26880, 4328856, 705868800, 115064097288, 18755374659840, 3057125142608376, 498311413884211200, 81224760551662338408, 13239635967017652998400]$ |
$20$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-159}) \) |
$C_2$ |
simple |
| 1.163.f |
$1$ |
$\F_{163}$ |
$163$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 5 x + 163 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$169$ |
$[169, 26871, 4328428, 705874299, 115064182519, 18755372857104, 3057125132647573, 498311414326468275, 81224760551508573844, 13239635966928525322311]$ |
$169$ |
$[169, 26871, 4328428, 705874299, 115064182519, 18755372857104, 3057125132647573, 498311414326468275, 81224760551508573844, 13239635966928525322311]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-627}) \) |
$C_2$ |
simple |
| 1.163.g |
$1$ |
$\F_{163}$ |
$163$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 6 x + 163 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$170$ |
$[170, 26860, 4328030, 705880800, 115064245850, 18755370851980, 3057125131076270, 498311414771299200, 81224760549087363530, 13239635966852890312300]$ |
$170$ |
$[170, 26860, 4328030, 705880800, 115064245850, 18755370851980, 3057125131076270, 498311414771299200, 81224760549087363530, 13239635966852890312300]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-154}) \) |
$C_2$ |
simple |
| 1.163.h |
$1$ |
$\F_{163}$ |
$163$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 7 x + 163 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$171$ |
$[171, 26847, 4327668, 705888171, 115064284221, 18755368753104, 3057125138239959, 498311415173409363, 81224760544651733004, 13239635966803162148607]$ |
$171$ |
$[171, 26847, 4327668, 705888171, 115064284221, 18755368753104, 3057125138239959, 498311415173409363, 81224760544651733004, 13239635966803162148607]$ |
$5$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-67}) \) |
$C_2$ |
simple |
| 1.163.i |
$1$ |
$\F_{163}$ |
$163$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 8 x + 163 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$172$ |
$[172, 26832, 4327348, 705896256, 115064295292, 18755366679504, 3057125153849092, 498311415489508608, 81224760538723362124, 13239635966788266948432]$ |
$172$ |
$[172, 26832, 4327348, 705896256, 115064295292, 18755366679504, 3057125153849092, 498311415489508608, 81224760538723362124, 13239635966788266948432]$ |
$10$ |
$0$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
| 1.163.j |
$1$ |
$\F_{163}$ |
$163$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 9 x + 163 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$173$ |
$[173, 26815, 4327076, 705904875, 115064277563, 18755364755920, 3057125176949681, 498311415682513875, 81224760532049531228, 13239635966812001948575]$ |
$173$ |
$[173, 26815, 4327076, 705904875, 115064277563, 18755364755920, 3057125176949681, 498311415682513875, 81224760532049531228, 13239635966812001948575]$ |
$5$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-571}) \) |
$C_2$ |
simple |
| 1.163.k |
$1$ |
$\F_{163}$ |
$163$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 10 x + 163 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$174$ |
$[174, 26796, 4326858, 705913824, 115064230494, 18755363107404, 3057125205929178, 498311415725692800, 81224760525529691214, 13239635966871966395436]$ |
$174$ |
$[174, 26796, 4326858, 705913824, 115064230494, 18755363107404, 3057125205929178, 498311415725692800, 81224760525529691214, 13239635966871966395436]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-138}) \) |
$C_2$ |
simple |
| 1.163.l |
$1$ |
$\F_{163}$ |
$163$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 11 x + 163 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$175$ |
$[175, 26775, 4326700, 705922875, 115064154625, 18755361853200, 3057125238562675, 498311415606445875, 81224760520114575700, 13239635966959293966375]$ |
$175$ |
$[175, 26775, 4326700, 705922875, 115064154625, 18755361853200, 3057125238562675, 498311415606445875, 81224760520114575700, 13239635966959293966375]$ |
$9$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-59}) \) |
$C_2$ |
simple |
| 1.163.m |
$1$ |
$\F_{163}$ |
$163$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 12 x + 163 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$176$ |
$[176, 26752, 4326608, 705931776, 115064051696, 18755361099904, 3057125272104464, 498311415329384448, 81224760516683676464, 13239635967059364936832]$ |
$176$ |
$[176, 26752, 4326608, 705931776, 115064051696, 18755361099904, 3057125272104464, 498311415329384448, 81224760516683676464, 13239635967059364936832]$ |
$10$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-127}) \) |
$C_2$ |
simple |
| 1.163.n |
$1$ |
$\F_{163}$ |
$163$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 13 x + 163 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$177$ |
$[177, 26727, 4326588, 705940251, 115063924767, 18755360933904, 3057125303429997, 498311414918321523, 81224760515910169284, 13239635967153593853207]$ |
$177$ |
$[177, 26727, 4326588, 705940251, 115063924767, 18755360933904, 3057125303429997, 498311414918321523, 81224760515910169284, 13239635967153593853207]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-483}) \) |
$C_2$ |
simple |
| 1.163.o |
$1$ |
$\F_{163}$ |
$163$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 14 x + 163 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$178$ |
$[178, 26700, 4326646, 705948000, 115063778338, 18755361413100, 3057125329233286, 498311414416752000, 81224760518126006098, 13239635967222271543500]$ |
$178$ |
$[178, 26700, 4326646, 705948000, 115063778338, 18755361413100, 3057125329233286, 498311414416752000, 81224760518126006098, 13239635967222271543500]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-114}) \) |
$C_2$ |
simple |
| 1.163.p |
$1$ |
$\F_{163}$ |
$163$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 15 x + 163 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$179$ |
$[179, 26671, 4326788, 705954699, 115063618469, 18755362557904, 3057125346284783, 498311413886358675, 81224760523203881084, 13239635967248285267311]$ |
$179$ |
$[179, 26671, 4326788, 705954699, 115063618469, 18755362557904, 3057125346284783, 498311413886358675, 81224760523203881084, 13239635967248285267311]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-427}) \) |
$C_2$ |
simple |
| 1.163.q |
$1$ |
$\F_{163}$ |
$163$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 16 x + 163 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$180$ |
$[180, 26640, 4327020, 705960000, 115063452900, 18755364341520, 3057125351754780, 498311413403040000, 81224760530477132820, 13239635967221344045200]$ |
$180$ |
$[180, 26640, 4327020, 705960000, 115063452900, 18755364341520, 3057125351754780, 498311413403040000, 81224760530477132820, 13239635967221344045200]$ |
$12$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-11}) \) |
$C_2$ |
simple |
| 1.163.r |
$1$ |
$\F_{163}$ |
$163$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 17 x + 163 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$181$ |
$[181, 26607, 4327348, 705963531, 115063291171, 18755366679504, 3057125343607369, 498311413049915283, 81224760538723362124, 13239635967142094085807]$ |
$181$ |
$[181, 26607, 4327348, 705963531, 115063291171, 18755366679504, 3057125343607369, 498311413049915283, 81224760538723362124, 13239635967142094085807]$ |
$5$ |
$0$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
| 1.163.s |
$1$ |
$\F_{163}$ |
$163$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 18 x + 163 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$182$ |
$[182, 26572, 4327778, 705964896, 115063144742, 18755369418604, 3057125321070002, 498311412906722688, 81224760546242625494, 13239635967025218118732]$ |
$182$ |
$[182, 26572, 4327778, 705964896, 115063144742, 18755369418604, 3057125321070002, 498311412906722688, 81224760546242625494, 13239635967025218118732]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-82}) \) |
$C_2$ |
simple |
| 1.163.t |
$1$ |
$\F_{163}$ |
$163$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 19 x + 163 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$183$ |
$[183, 26535, 4328316, 705963675, 115063027113, 18755372324880, 3057125285183691, 498311413034985075, 81224760551066507268, 13239635966900268713175]$ |
$183$ |
$[183, 26535, 4328316, 705963675, 115063027113, 18755372324880, 3057125285183691, 498311413034985075, 81224760551066507268, 13239635966900268713175]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-291}) \) |
$C_2$ |
simple |
| 1.163.u |
$1$ |
$\F_{163}$ |
$163$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 20 x + 163 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$184$ |
$[184, 26496, 4328968, 705959424, 115062953944, 18755375071104, 3057125239438888, 498311413458278400, 81224760551340179704, 13239635966808585687936]$ |
$184$ |
$[184, 26496, 4328968, 705959424, 115062953944, 18755375071104, 3057125239438888, 498311413458278400, 81224760551340179704, 13239635966808585687936]$ |
$10$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-7}) \) |
$C_2$ |
simple |
| 1.163.v |
$1$ |
$\F_{163}$ |
$163$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 21 x + 163 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$185$ |
$[185, 26455, 4329740, 705951675, 115062943175, 18755377223440, 3057125190502085, 498311414136897075, 81224760545925729140, 13239635966794187868775]$ |
$185$ |
$[185, 26455, 4329740, 705951675, 115062943175, 18755377223440, 3057125190502085, 498311414136897075, 81224760545925729140, 13239635966794187868775]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-211}) \) |
$C_2$ |
simple |
| 1.163.w |
$1$ |
$\F_{163}$ |
$163$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 22 x + 163 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$186$ |
$[186, 26412, 4330638, 705939936, 115063015146, 18755378227404, 3057125149038174, 498311414936170368, 81224760535281558234, 13239635966886006095532]$ |
$186$ |
$[186, 26412, 4330638, 705939936, 115063015146, 18755378227404, 3057125149038174, 498311414936170368, 81224760535281558234, 13239635966886006095532]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-42}) \) |
$C_2$ |
simple |
| 1.163.x |
$1$ |
$\F_{163}$ |
$163$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 23 x + 163 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$187$ |
$[187, 26367, 4331668, 705923691, 115063192717, 18755377393104, 3057125130633607, 498311415587643603, 81224760522679569004, 13239635967068233895007]$ |
$187$ |
$[187, 26367, 4331668, 705923691, 115063192717, 18755377393104, 3057125130633607, 498311415587643603, 81224760522679569004, 13239635967068233895007]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-123}) \) |
$C_2$ |
simple |
| 1.163.y |
$1$ |
$\F_{163}$ |
$163$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 24 x + 163 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$188$ |
$[188, 26320, 4332836, 705902400, 115063501388, 18755373879760, 3057125156825396, 498311415642297600, 81224760515829088988, 13239635967234910987600]$ |
$188$ |
$[188, 26320, 4332836, 705902400, 115063501388, 18755373879760, 3057125156825396, 498311415642297600, 81224760515829088988, 13239635967234910987600]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-19}) \) |
$C_2$ |
simple |