| Label |
Dimension |
Base field |
Base char. |
Simple |
Geom. simple |
Primitive |
Ordinary |
Almost ordinary |
Supersingular |
Princ. polarizable |
Jacobian |
L-polynomial |
Newton slopes |
Newton elevation |
$p$-rank |
$p$-corank |
Angle rank |
Angle corank |
$\mathbb{F}_q$ points on curve |
$\mathbb{F}_{q^k}$ points on curve |
$\mathbb{F}_q$ points on variety |
$\mathbb{F}_{q^k}$ points on variety |
Jacobians |
Hyperelliptic Jacobians |
Num. twists |
Max. twist degree |
End. degree |
Number fields |
Galois groups |
Isogeny factors |
| 1.157.az |
$1$ |
$\F_{157}$ |
$157$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 25 x + 157 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$133$ |
$[133, 24339, 3866044, 607525779, 95388411433, 14976064748736, 2351243191706269, 369145193539591875, 57955795535652304108, 9099059900892473117739]$ |
$133$ |
$[133, 24339, 3866044, 607525779, 95388411433, 14976064748736, 2351243191706269, 369145193539591875, 57955795535652304108, 9099059900892473117739]$ |
$1$ |
$0$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
| 1.157.ay |
$1$ |
$\F_{157}$ |
$157$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 24 x + 157 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$134$ |
$[134, 24388, 3867374, 607553856, 95388923894, 14976073220836, 2351243321663006, 369145195414265088, 57955795561275048038, 9099059901225464638468]$ |
$134$ |
$[134, 24388, 3867374, 607553856, 95388923894, 14976073220836, 2351243321663006, 369145195414265088, 57955795561275048038, 9099059901225464638468]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-13}) \) |
$C_2$ |
simple |
| 1.157.ax |
$1$ |
$\F_{157}$ |
$157$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 23 x + 157 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$135$ |
$[135, 24435, 3868560, 607576275, 95389272675, 14976077791680, 2351243370644415, 369145195779089475, 57955795561135049040, 9099059901151713849675]$ |
$135$ |
$[135, 24435, 3868560, 607576275, 95389272675, 14976077791680, 2351243370644415, 369145195779089475, 57955795561135049040, 9099059901151713849675]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-11}) \) |
$C_2$ |
simple |
| 1.157.aw |
$1$ |
$\F_{157}$ |
$157$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 22 x + 157 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$136$ |
$[136, 24480, 3869608, 607593600, 95389486216, 14976079489440, 2351243368508968, 369145195372454400, 57955795551318639496, 9099059900986481162400]$ |
$136$ |
$[136, 24480, 3869608, 607593600, 95389486216, 14976079489440, 2351243368508968, 369145195372454400, 57955795551318639496, 9099059900986481162400]$ |
$8$ |
$0$ |
$4$ |
$4$ |
$1$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
simple |
| 1.157.av |
$1$ |
$\F_{157}$ |
$157$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 21 x + 157 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$137$ |
$[137, 24523, 3870524, 607606371, 95389590197, 14976079174336, 2351243337908777, 369145194688350243, 57955795540957614188, 9099059900873007009043]$ |
$137$ |
$[137, 24523, 3870524, 607606371, 95389590197, 14976079174336, 2351243337908777, 369145194688350243, 57955795540957614188, 9099059900873007009043]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-187}) \) |
$C_2$ |
simple |
| 1.157.au |
$1$ |
$\F_{157}$ |
$157$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 20 x + 157 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$138$ |
$[138, 24564, 3871314, 607615104, 95389607658, 14976077554836, 2351243295434514, 369145194032755200, 57955795534399208778, 9099059900851831373364]$ |
$138$ |
$[138, 24564, 3871314, 607615104, 95389607658, 14976077554836, 2351243295434514, 369145194032755200, 57955795534399208778, 9099059900851831373364]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-57}) \) |
$C_2$ |
simple |
| 1.157.at |
$1$ |
$\F_{157}$ |
$157$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 19 x + 157 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$139$ |
$[139, 24603, 3871984, 607620291, 95389559119, 14976075203136, 2351243252649451, 369145193571158883, 57955795532886764848, 9099059900909188016643]$ |
$139$ |
$[139, 24603, 3871984, 607620291, 95389559119, 14976075203136, 2351243252649451, 369145193571158883, 57955795532886764848, 9099059900909188016643]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-267}) \) |
$C_2$ |
simple |
| 1.157.as |
$1$ |
$\F_{157}$ |
$157$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 18 x + 157 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$140$ |
$[140, 24640, 3872540, 607622400, 95389462700, 14976072569920, 2351243217017660, 369145193368089600, 57955795535827936460, 9099059901009145883200]$ |
$140$ |
$[140, 24640, 3872540, 607622400, 95389462700, 14976072569920, 2351243217017660, 369145193368089600, 57955795535827936460, 9099059901009145883200]$ |
$10$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-19}) \) |
$C_2$ |
simple |
| 1.157.ar |
$1$ |
$\F_{157}$ |
$157$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 17 x + 157 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$141$ |
$[141, 24675, 3872988, 607621875, 95389334241, 14976069998400, 2351243192731413, 369145193419471875, 57955795541719672716, 9099059901113432110875]$ |
$141$ |
$[141, 24675, 3872988, 607621875, 95389334241, 14976069998400, 2351243192731413, 369145193419471875, 57955795541719672716, 9099059901113432110875]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-339}) \) |
$C_2$ |
simple |
| 1.157.aq |
$1$ |
$\F_{157}$ |
$157$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 16 x + 157 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$142$ |
$[142, 24708, 3873334, 607619136, 95389187422, 14976067737636, 2351243181442822, 369145193678600448, 57955795548791953198, 9099059901192207404868]$ |
$142$ |
$[142, 24708, 3873334, 607619136, 95389187422, 14976067737636, 2351243181442822, 369145193678600448, 57955795548791953198, 9099059901192207404868]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-93}) \) |
$C_2$ |
simple |
| 1.157.ap |
$1$ |
$\F_{157}$ |
$157$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 15 x + 157 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$143$ |
$[143, 24739, 3873584, 607614579, 95389033883, 14976065955136, 2351243182904759, 369145194076476675, 57955795555425358448, 9099059901228471627739]$ |
$143$ |
$[143, 24739, 3873584, 607614579, 95389033883, 14976065955136, 2351243182904759, 369145194076476675, 57955795555425358448, 9099059901228471627739]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-403}) \) |
$C_2$ |
simple |
| 1.157.ao |
$1$ |
$\F_{157}$ |
$157$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 14 x + 157 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$144$ |
$[144, 24768, 3873744, 607608576, 95388883344, 14976064748736, 2351243195526096, 369145194537212928, 57955795560391025808, 9099059901218251685568]$ |
$144$ |
$[144, 24768, 3873744, 607608576, 95388883344, 14976064748736, 2351243195526096, 369145194537212928, 57955795560391025808, 9099059901218251685568]$ |
$14$ |
$0$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
| 1.157.an |
$1$ |
$\F_{157}$ |
$157$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 13 x + 157 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$145$ |
$[145, 24795, 3873820, 607601475, 95388743725, 14976064157760, 2351243216846305, 369145194989170275, 57955795562955371980, 9099059901168261521475]$ |
$145$ |
$[145, 24795, 3873820, 607601475, 95388743725, 14976064157760, 2351243216846305, 369145194989170275, 57955795562955371980, 9099059901168261521475]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-51}) \) |
$C_2$ |
simple |
| 1.157.am |
$1$ |
$\F_{157}$ |
$157$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 12 x + 157 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$146$ |
$[146, 24820, 3873818, 607593600, 95388621266, 14976064173460, 2351243243934458, 369145195372454400, 57955795562886157586, 9099059901092321634100]$ |
$146$ |
$[146, 24820, 3873818, 607593600, 95388621266, 14976064173460, 2351243243934458, 369145195372454400, 57955795562886157586, 9099059901092321634100]$ |
$7$ |
$0$ |
$4$ |
$4$ |
$1$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
simple |
| 1.157.al |
$1$ |
$\F_{157}$ |
$157$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 11 x + 157 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$147$ |
$[147, 24843, 3873744, 607585251, 95388520647, 14976064748736, 2351243273717667, 369145195643354403, 57955795560391025808, 9099059901007479391443]$ |
$147$ |
$[147, 24843, 3873744, 607585251, 95388520647, 14976064748736, 2351243273717667, 369145195643354403, 57955795560391025808, 9099059901007479391443]$ |
$5$ |
$0$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
| 1.157.ak |
$1$ |
$\F_{157}$ |
$157$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 10 x + 157 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$148$ |
$[148, 24864, 3873604, 607576704, 95388445108, 14976065807136, 2351243303244004, 369145195776268800, 57955795556014566868, 9099059900930477880864]$ |
$148$ |
$[148, 24864, 3873604, 607576704, 95388445108, 14976065807136, 2351243303244004, 369145195776268800, 57955795556014566868, 9099059900930477880864]$ |
$12$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-33}) \) |
$C_2$ |
simple |
| 1.157.aj |
$1$ |
$\F_{157}$ |
$157$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 9 x + 157 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$149$ |
$[149, 24883, 3873404, 607568211, 95388396569, 14976067251136, 2351243329884941, 369145195763622723, 57955795550515242668, 9099059900874976495243]$ |
$149$ |
$[149, 24883, 3873404, 607568211, 95388396569, 14976067251136, 2351243329884941, 369145195763622723, 57955795550515242668, 9099059900874976495243]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-547}) \) |
$C_2$ |
simple |
| 1.157.ai |
$1$ |
$\F_{157}$ |
$157$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 8 x + 157 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$150$ |
$[150, 24900, 3873150, 607560000, 95388375750, 14976068969700, 2351243351482350, 369145195614240000, 57955795544739151350, 9099059900849727274500]$ |
$150$ |
$[150, 24900, 3873150, 607560000, 95388375750, 14976068969700, 2351243351482350, 369145195614240000, 57955795544739151350, 9099059900849727274500]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-141}) \) |
$C_2$ |
simple |
| 1.157.ah |
$1$ |
$\F_{157}$ |
$157$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 7 x + 157 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$151$ |
$[151, 24915, 3872848, 607552275, 95388382291, 14976070845120, 2351243366445103, 369145195350593475, 57955795539503619856, 9099059900857753572075]$ |
$151$ |
$[151, 24915, 3872848, 607552275, 95388382291, 14976070845120, 2351243366445103, 369145195350593475, 57955795539503619856, 9099059900857753572075]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-579}) \) |
$C_2$ |
simple |
| 1.157.ag |
$1$ |
$\F_{157}$ |
$157$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 6 x + 157 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$152$ |
$[152, 24928, 3872504, 607545216, 95388414872, 14976072759136, 2351243373800312, 369145195005316608, 57955795535499983768, 9099059900896458268768]$ |
$152$ |
$[152, 24928, 3872504, 607545216, 95388414872, 14976072759136, 2351243373800312, 369145195005316608, 57955795535499983768, 9099059900896458268768]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-37}) \) |
$C_2$ |
simple |
| 1.157.af |
$1$ |
$\F_{157}$ |
$157$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 5 x + 157 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$153$ |
$[153, 24939, 3872124, 607538979, 95388471333, 14976074598336, 2351243373204249, 369145194617319075, 57955795533221647788, 9099059900958503882739]$ |
$153$ |
$[153, 24939, 3872124, 607538979, 95388471333, 14976074598336, 2351243373204249, 369145194617319075, 57955795533221647788, 9099059900958503882739]$ |
$5$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-67}) \) |
$C_2$ |
simple |
| 1.157.ae |
$1$ |
$\F_{157}$ |
$157$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 4 x + 157 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$154$ |
$[154, 24948, 3871714, 607533696, 95388548794, 14976076258836, 2351243364917986, 369145194227808768, 57955795532920617178, 9099059901033252895668]$ |
$154$ |
$[154, 24948, 3871714, 607533696, 95388548794, 14976076258836, 2351243364917986, 369145194227808768, 57955795532920617178, 9099059901033252895668]$ |
$12$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-17}) \) |
$C_2$ |
simple |
| 1.157.ad |
$1$ |
$\F_{157}$ |
$157$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 3 x + 157 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$155$ |
$[155, 24955, 3871280, 607529475, 95388643775, 14976077650240, 2351243349752795, 369145193876482275, 57955795534593150320, 9099059901108529802275]$ |
$155$ |
$[155, 24955, 3871280, 607529475, 95388643775, 14976077650240, 2351243349752795, 369145193876482275, 57955795534593150320, 9099059901108529802275]$ |
$5$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-619}) \) |
$C_2$ |
simple |
| 1.157.ac |
$1$ |
$\F_{157}$ |
$157$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 2 x + 157 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$156$ |
$[156, 24960, 3870828, 607526400, 95388752316, 14976078698880, 2351243328990348, 369145193598105600, 57955795537993005276, 9099059901172463164800]$ |
$156$ |
$[156, 24960, 3870828, 607526400, 95388752316, 14976078698880, 2351243328990348, 369145193598105600, 57955795537993005276, 9099059901172463164800]$ |
$16$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-39}) \) |
$C_2$ |
simple |
| 1.157.ab |
$1$ |
$\F_{157}$ |
$157$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - x + 157 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$157$ |
$[157, 24963, 3870364, 607524531, 95388870097, 14976079350336, 2351243304282757, 369145193419666563, 57955795542668938828, 9099059901215182686843]$ |
$157$ |
$[157, 24963, 3870364, 607524531, 95388870097, 14976079350336, 2351243304282757, 369145193419666563, 57955795542668938828, 9099059901215182686843]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-627}) \) |
$C_2$ |
simple |
| 1.157.a |
$1$ |
$\F_{157}$ |
$157$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 + 157 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$158$ |
$[158, 24964, 3869894, 607523904, 95388992558, 14976079571236, 2351243277537494, 369145193358240000, 57955795548021664958, 9099059901230179383364]$ |
$158$ |
$[158, 24964, 3869894, 607523904, 95388992558, 14976079571236, 2351243277537494, 369145193358240000, 57955795548021664958, 9099059901230179383364]$ |
$6$ |
$0$ |
$1$ |
$1$ |
$2$ |
\(\Q(\sqrt{-157}) \) |
$C_2$ |
simple |
| 1.157.b |
$1$ |
$\F_{157}$ |
$157$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + x + 157 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$159$ |
$[159, 24963, 3869424, 607524531, 95389115019, 14976079350336, 2351243250792231, 369145193419666563, 57955795553374391088, 9099059901215182686843]$ |
$159$ |
$[159, 24963, 3869424, 607524531, 95389115019, 14976079350336, 2351243250792231, 369145193419666563, 57955795553374391088, 9099059901215182686843]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-627}) \) |
$C_2$ |
simple |
| 1.157.c |
$1$ |
$\F_{157}$ |
$157$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 2 x + 157 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$160$ |
$[160, 24960, 3868960, 607526400, 95389232800, 14976078698880, 2351243226084640, 369145193598105600, 57955795558050324640, 9099059901172463164800]$ |
$160$ |
$[160, 24960, 3868960, 607526400, 95389232800, 14976078698880, 2351243226084640, 369145193598105600, 57955795558050324640, 9099059901172463164800]$ |
$16$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-39}) \) |
$C_2$ |
simple |
| 1.157.d |
$1$ |
$\F_{157}$ |
$157$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 3 x + 157 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$161$ |
$[161, 24955, 3868508, 607529475, 95389341341, 14976077650240, 2351243205322193, 369145193876482275, 57955795561450179596, 9099059901108529802275]$ |
$161$ |
$[161, 24955, 3868508, 607529475, 95389341341, 14976077650240, 2351243205322193, 369145193876482275, 57955795561450179596, 9099059901108529802275]$ |
$5$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-619}) \) |
$C_2$ |
simple |
| 1.157.e |
$1$ |
$\F_{157}$ |
$157$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 4 x + 157 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$162$ |
$[162, 24948, 3868074, 607533696, 95389436322, 14976076258836, 2351243190157002, 369145194227808768, 57955795563122712738, 9099059901033252895668]$ |
$162$ |
$[162, 24948, 3868074, 607533696, 95389436322, 14976076258836, 2351243190157002, 369145194227808768, 57955795563122712738, 9099059901033252895668]$ |
$12$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-17}) \) |
$C_2$ |
simple |
| 1.157.f |
$1$ |
$\F_{157}$ |
$157$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 5 x + 157 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$163$ |
$[163, 24939, 3867664, 607538979, 95389513783, 14976074598336, 2351243181870739, 369145194617319075, 57955795562821682128, 9099059900958503882739]$ |
$163$ |
$[163, 24939, 3867664, 607538979, 95389513783, 14976074598336, 2351243181870739, 369145194617319075, 57955795562821682128, 9099059900958503882739]$ |
$5$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-67}) \) |
$C_2$ |
simple |
| 1.157.g |
$1$ |
$\F_{157}$ |
$157$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 6 x + 157 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$164$ |
$[164, 24928, 3867284, 607545216, 95389570244, 14976072759136, 2351243181274676, 369145195005316608, 57955795560543346148, 9099059900896458268768]$ |
$164$ |
$[164, 24928, 3867284, 607545216, 95389570244, 14976072759136, 2351243181274676, 369145195005316608, 57955795560543346148, 9099059900896458268768]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-37}) \) |
$C_2$ |
simple |
| 1.157.h |
$1$ |
$\F_{157}$ |
$157$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 7 x + 157 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$165$ |
$[165, 24915, 3866940, 607552275, 95389602825, 14976070845120, 2351243188629885, 369145195350593475, 57955795556539710060, 9099059900857753572075]$ |
$165$ |
$[165, 24915, 3866940, 607552275, 95389602825, 14976070845120, 2351243188629885, 369145195350593475, 57955795556539710060, 9099059900857753572075]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-579}) \) |
$C_2$ |
simple |
| 1.157.i |
$1$ |
$\F_{157}$ |
$157$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 8 x + 157 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$166$ |
$[166, 24900, 3866638, 607560000, 95389609366, 14976068969700, 2351243203592638, 369145195614240000, 57955795551304178566, 9099059900849727274500]$ |
$166$ |
$[166, 24900, 3866638, 607560000, 95389609366, 14976068969700, 2351243203592638, 369145195614240000, 57955795551304178566, 9099059900849727274500]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-141}) \) |
$C_2$ |
simple |
| 1.157.j |
$1$ |
$\F_{157}$ |
$157$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 9 x + 157 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$167$ |
$[167, 24883, 3866384, 607568211, 95389588547, 14976067251136, 2351243225190047, 369145195763622723, 57955795545528087248, 9099059900874976495243]$ |
$167$ |
$[167, 24883, 3866384, 607568211, 95389588547, 14976067251136, 2351243225190047, 369145195763622723, 57955795545528087248, 9099059900874976495243]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-547}) \) |
$C_2$ |
simple |
| 1.157.k |
$1$ |
$\F_{157}$ |
$157$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 10 x + 157 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$168$ |
$[168, 24864, 3866184, 607576704, 95389540008, 14976065807136, 2351243251830984, 369145195776268800, 57955795540028763048, 9099059900930477880864]$ |
$168$ |
$[168, 24864, 3866184, 607576704, 95389540008, 14976065807136, 2351243251830984, 369145195776268800, 57955795540028763048, 9099059900930477880864]$ |
$12$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-33}) \) |
$C_2$ |
simple |
| 1.157.l |
$1$ |
$\F_{157}$ |
$157$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 11 x + 157 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$169$ |
$[169, 24843, 3866044, 607585251, 95389464469, 14976064748736, 2351243281357321, 369145195643354403, 57955795535652304108, 9099059901007479391443]$ |
$169$ |
$[169, 24843, 3866044, 607585251, 95389464469, 14976064748736, 2351243281357321, 369145195643354403, 57955795535652304108, 9099059901007479391443]$ |
$5$ |
$0$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
| 1.157.m |
$1$ |
$\F_{157}$ |
$157$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 12 x + 157 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$170$ |
$[170, 24820, 3865970, 607593600, 95389363850, 14976064173460, 2351243311140530, 369145195372454400, 57955795533157172330, 9099059901092321634100]$ |
$170$ |
$[170, 24820, 3865970, 607593600, 95389363850, 14976064173460, 2351243311140530, 369145195372454400, 57955795533157172330, 9099059901092321634100]$ |
$7$ |
$0$ |
$4$ |
$4$ |
$1$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
simple |
| 1.157.n |
$1$ |
$\F_{157}$ |
$157$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 13 x + 157 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$171$ |
$[171, 24795, 3865968, 607601475, 95389241391, 14976064157760, 2351243338228683, 369145194989170275, 57955795533087957936, 9099059901168261521475]$ |
$171$ |
$[171, 24795, 3865968, 607601475, 95389241391, 14976064157760, 2351243338228683, 369145194989170275, 57955795533087957936, 9099059901168261521475]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-51}) \) |
$C_2$ |
simple |
| 1.157.o |
$1$ |
$\F_{157}$ |
$157$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 14 x + 157 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$172$ |
$[172, 24768, 3866044, 607608576, 95389101772, 14976064748736, 2351243359548892, 369145194537212928, 57955795535652304108, 9099059901218251685568]$ |
$172$ |
$[172, 24768, 3866044, 607608576, 95389101772, 14976064748736, 2351243359548892, 369145194537212928, 57955795535652304108, 9099059901218251685568]$ |
$14$ |
$0$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
| 1.157.p |
$1$ |
$\F_{157}$ |
$157$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 15 x + 157 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$173$ |
$[173, 24739, 3866204, 607614579, 95388951233, 14976065955136, 2351243372170229, 369145194076476675, 57955795540617971468, 9099059901228471627739]$ |
$173$ |
$[173, 24739, 3866204, 607614579, 95388951233, 14976065955136, 2351243372170229, 369145194076476675, 57955795540617971468, 9099059901228471627739]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-403}) \) |
$C_2$ |
simple |
| 1.157.q |
$1$ |
$\F_{157}$ |
$157$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 16 x + 157 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$174$ |
$[174, 24708, 3866454, 607619136, 95388797694, 14976067737636, 2351243373632166, 369145193678600448, 57955795547251376718, 9099059901192207404868]$ |
$174$ |
$[174, 24708, 3866454, 607619136, 95388797694, 14976067737636, 2351243373632166, 369145193678600448, 57955795547251376718, 9099059901192207404868]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-93}) \) |
$C_2$ |
simple |
| 1.157.r |
$1$ |
$\F_{157}$ |
$157$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 17 x + 157 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$175$ |
$[175, 24675, 3866800, 607621875, 95388650875, 14976069998400, 2351243362343575, 369145193419471875, 57955795554323657200, 9099059901113432110875]$ |
$175$ |
$[175, 24675, 3866800, 607621875, 95388650875, 14976069998400, 2351243362343575, 369145193419471875, 57955795554323657200, 9099059901113432110875]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-339}) \) |
$C_2$ |
simple |
| 1.157.s |
$1$ |
$\F_{157}$ |
$157$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 18 x + 157 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$176$ |
$[176, 24640, 3867248, 607622400, 95388522416, 14976072569920, 2351243338057328, 369145193368089600, 57955795560215393456, 9099059901009145883200]$ |
$176$ |
$[176, 24640, 3867248, 607622400, 95388522416, 14976072569920, 2351243338057328, 369145193368089600, 57955795560215393456, 9099059901009145883200]$ |
$10$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-19}) \) |
$C_2$ |
simple |
| 1.157.t |
$1$ |
$\F_{157}$ |
$157$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 19 x + 157 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$177$ |
$[177, 24603, 3867804, 607620291, 95388425997, 14976075203136, 2351243302425537, 369145193571158883, 57955795563156565068, 9099059900909188016643]$ |
$177$ |
$[177, 24603, 3867804, 607620291, 95388425997, 14976075203136, 2351243302425537, 369145193571158883, 57955795563156565068, 9099059900909188016643]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-267}) \) |
$C_2$ |
simple |
| 1.157.u |
$1$ |
$\F_{157}$ |
$157$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 20 x + 157 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$178$ |
$[178, 24564, 3868474, 607615104, 95388377458, 14976077554836, 2351243259640474, 369145194032755200, 57955795561644121138, 9099059900851831373364]$ |
$178$ |
$[178, 24564, 3868474, 607615104, 95388377458, 14976077554836, 2351243259640474, 369145194032755200, 57955795561644121138, 9099059900851831373364]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-57}) \) |
$C_2$ |
simple |
| 1.157.v |
$1$ |
$\F_{157}$ |
$157$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 21 x + 157 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$179$ |
$[179, 24523, 3869264, 607606371, 95388394919, 14976079174336, 2351243217166211, 369145194688350243, 57955795555085715728, 9099059900873007009043]$ |
$179$ |
$[179, 24523, 3869264, 607606371, 95388394919, 14976079174336, 2351243217166211, 369145194688350243, 57955795555085715728, 9099059900873007009043]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-187}) \) |
$C_2$ |
simple |
| 1.157.w |
$1$ |
$\F_{157}$ |
$157$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 22 x + 157 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$180$ |
$[180, 24480, 3870180, 607593600, 95388498900, 14976079489440, 2351243186566020, 369145195372454400, 57955795544724690420, 9099059900986481162400]$ |
$180$ |
$[180, 24480, 3870180, 607593600, 95388498900, 14976079489440, 2351243186566020, 369145195372454400, 57955795544724690420, 9099059900986481162400]$ |
$8$ |
$0$ |
$4$ |
$4$ |
$1$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
simple |
| 1.157.x |
$1$ |
$\F_{157}$ |
$157$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 23 x + 157 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$181$ |
$[181, 24435, 3871228, 607576275, 95388712441, 14976077791680, 2351243184430573, 369145195779089475, 57955795534908280876, 9099059901151713849675]$ |
$181$ |
$[181, 24435, 3871228, 607576275, 95388712441, 14976077791680, 2351243184430573, 369145195779089475, 57955795534908280876, 9099059901151713849675]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-11}) \) |
$C_2$ |
simple |
| 1.157.y |
$1$ |
$\F_{157}$ |
$157$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 24 x + 157 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$182$ |
$[182, 24388, 3872414, 607553856, 95389061222, 14976073220836, 2351243233411982, 369145195414265088, 57955795534768281878, 9099059901225464638468]$ |
$182$ |
$[182, 24388, 3872414, 607553856, 95389061222, 14976073220836, 2351243233411982, 369145195414265088, 57955795534768281878, 9099059901225464638468]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-13}) \) |
$C_2$ |
simple |