| Label |
Dimension |
Base field |
Base char. |
Simple |
Geom. simple |
Primitive |
Ordinary |
Almost ordinary |
Supersingular |
Princ. polarizable |
Jacobian |
L-polynomial |
Newton slopes |
Newton elevation |
$p$-rank |
$p$-corank |
Angle rank |
Angle corank |
$\mathbb{F}_q$ points on curve |
$\mathbb{F}_{q^k}$ points on curve |
$\mathbb{F}_q$ points on variety |
$\mathbb{F}_{q^k}$ points on variety |
Jacobians |
Hyperelliptic Jacobians |
Num. twists |
Max. twist degree |
End. degree |
Number fields |
Galois groups |
Isogeny factors |
| 1.113.av |
$1$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 21 x + 113 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$93$ |
$[93, 12555, 1440756, 163026675, 18424159413, 2081950050240, 235260534034101, 26584441827207075, 3004041937428477108, 339456738992060569275]$ |
$93$ |
$[93, 12555, 1440756, 163026675, 18424159413, 2081950050240, 235260534034101, 26584441827207075, 3004041937428477108, 339456738992060569275]$ |
$1$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-11}) \) |
$C_2$ |
simple |
| 1.113.au |
$1$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 20 x + 113 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$94$ |
$[94, 12596, 1441678, 163042624, 18424394894, 2081953150004, 235260571122398, 26584442232710400, 3004041941449423294, 339456739027213408436]$ |
$94$ |
$[94, 12596, 1441678, 163042624, 18424394894, 2081953150004, 235260571122398, 26584442232710400, 3004041941449423294, 339456739027213408436]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-13}) \) |
$C_2$ |
simple |
| 1.113.at |
$1$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 19 x + 113 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$95$ |
$[95, 12635, 1442480, 163054675, 18424537975, 2081954463680, 235260578516695, 26584442201679075, 3004041939720626480, 339456738994407653675]$ |
$95$ |
$[95, 12635, 1442480, 163054675, 18424537975, 2081954463680, 235260578516695, 26584442201679075, 3004041939720626480, 339456738994407653675]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-91}) \) |
$C_2$ |
simple |
| 1.113.as |
$1$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 18 x + 113 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$96$ |
$[96, 12672, 1443168, 163063296, 18424608096, 2081954565504, 235260569714784, 26584442001266688, 3004041936835204704, 339456738963380303232]$ |
$96$ |
$[96, 12672, 1443168, 163063296, 18424608096, 2081954565504, 235260569714784, 26584442001266688, 3004041936835204704, 339456738963380303232]$ |
$7$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-2}) \) |
$C_2$ |
simple |
| 1.113.ar |
$1$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 17 x + 113 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$97$ |
$[97, 12707, 1443748, 163068931, 18424622417, 2081953915904, 235260554240417, 26584441789937283, 3004041934919005924, 339456738955834210307]$ |
$97$ |
$[97, 12707, 1443748, 163068931, 18424622417, 2081953915904, 235260554240417, 26584441789937283, 3004041934919005924, 339456738955834210307]$ |
$1$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-163}) \) |
$C_2$ |
simple |
| 1.113.aq |
$1$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 16 x + 113 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$98$ |
$[98, 12740, 1444226, 163072000, 18424595938, 2081952874820, 235260538411906, 26584441648128000, 3004041934577806178, 339456738969464725700]$ |
$98$ |
$[98, 12740, 1444226, 163072000, 18424595938, 2081952874820, 235260538411906, 26584441648128000, 3004041934577806178, 339456738969464725700]$ |
$5$ |
$0$ |
$4$ |
$4$ |
$1$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
simple |
| 1.113.ap |
$1$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 15 x + 113 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$99$ |
$[99, 12771, 1444608, 163072899, 18424541619, 2081951714304, 235260526020003, 26584441603020675, 3004041935582417664, 339456738993037487811]$ |
$99$ |
$[99, 12771, 1444608, 163072899, 18424541619, 2081951714304, 235260526020003, 26584441603020675, 3004041935582417664, 339456738993037487811]$ |
$5$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-227}) \) |
$C_2$ |
simple |
| 1.113.ao |
$1$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 14 x + 113 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$100$ |
$[100, 12800, 1444900, 163072000, 18424470500, 2081950630400, 235260518920100, 26584441648128000, 3004041937342252900, 339456739014979904000]$ |
$100$ |
$[100, 12800, 1444900, 163072000, 18424470500, 2081950630400, 235260518920100, 26584441648128000, 3004041937342252900, 339456739014979904000]$ |
$8$ |
$0$ |
$4$ |
$4$ |
$1$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
simple |
| 1.113.an |
$1$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 13 x + 113 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$101$ |
$[101, 12827, 1445108, 163069651, 18424391821, 2081949754304, 235260517543789, 26584441758359523, 3004041939211722164, 339456739027468857707]$ |
$101$ |
$[101, 12827, 1445108, 163069651, 18424391821, 2081949754304, 235260517543789, 26584441758359523, 3004041939211722164, 339456739027468857707]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-283}) \) |
$C_2$ |
simple |
| 1.113.am |
$1$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 12 x + 113 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$102$ |
$[102, 12852, 1445238, 163066176, 18424313142, 2081949162804, 235260521334822, 26584441901192448, 3004041940668035334, 339456739027577041332]$ |
$102$ |
$[102, 12852, 1445238, 163066176, 18424313142, 2081949162804, 235260521334822, 26584441901192448, 3004041940668035334, 339456739027577041332]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-77}) \) |
$C_2$ |
simple |
| 1.113.al |
$1$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 11 x + 113 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$103$ |
$[103, 12875, 1445296, 163061875, 18424240463, 2081948888000, 235260529114511, 26584442044531875, 3004041941393536048, 339456739016676426875]$ |
$103$ |
$[103, 12875, 1445296, 163061875, 18424240463, 2081948888000, 235260529114511, 26584442044531875, 3004041941393536048, 339456739016676426875]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-331}) \) |
$C_2$ |
simple |
| 1.113.ak |
$1$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 10 x + 113 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$104$ |
$[104, 12896, 1445288, 163057024, 18424178344, 2081948926304, 235260539381608, 26584442161804800, 3004041941290615784, 339456738998986115936]$ |
$104$ |
$[104, 12896, 1445288, 163057024, 18424178344, 2081948926304, 235260539381608, 26584442161804800, 3004041941290615784, 339456738998986115936]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-22}) \) |
$C_2$ |
simple |
| 1.113.aj |
$1$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 9 x + 113 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$105$ |
$[105, 12915, 1445220, 163051875, 18424130025, 2081949246720, 235260550551705, 26584442234791875, 3004041940452538020, 339456738979889529075]$ |
$105$ |
$[105, 12915, 1445220, 163051875, 18424130025, 2081949246720, 235260550551705, 26584442234791875, 3004041940452538020, 339456738979889529075]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-371}) \) |
$C_2$ |
simple |
| 1.113.ai |
$1$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 8 x + 113 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$106$ |
$[106, 12932, 1445098, 163046656, 18424097546, 2081949798404, 235260561141194, 26584442254660608, 3004041939109148074, 339456738964428972932]$ |
$106$ |
$[106, 12932, 1445098, 163046656, 18424097546, 2081949798404, 235260561141194, 26584442254660608, 3004041939109148074, 339456738964428972932]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-97}) \) |
$C_2$ |
simple |
| 1.113.ah |
$1$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 7 x + 113 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$107$ |
$[107, 12947, 1444928, 163041571, 18424081867, 2081950517504, 235260569900827, 26584442221623363, 3004041937562452544, 339456738956210433107]$ |
$107$ |
$[107, 12947, 1444928, 163041571, 18424081867, 2081950517504, 235260569900827, 26584442221623363, 3004041937562452544, 339456738956210433107]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-403}) \) |
$C_2$ |
simple |
| 1.113.ag |
$1$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 6 x + 113 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$108$ |
$[108, 12960, 1444716, 163036800, 18424082988, 2081951333280, 235260575903916, 26584442143603200, 3004041936123423468, 339456738956814352800]$ |
$108$ |
$[108, 12960, 1444716, 163036800, 18424082988, 2081951333280, 235260575903916, 26584442143603200, 3004041936123423468, 339456738956814352800]$ |
$18$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-26}) \) |
$C_2$ |
simple |
| 1.113.af |
$1$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 5 x + 113 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$109$ |
$[109, 12971, 1444468, 163032499, 18424100069, 2081952173504, 235260578594213, 26584442034250275, 3004041935058116404, 339456738965705542811]$ |
$109$ |
$[109, 12971, 1444468, 163032499, 18424100069, 2081952173504, 235260578594213, 26584442034250275, 3004041935058116404, 339456738965705542811]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-427}) \) |
$C_2$ |
simple |
| 1.113.ae |
$1$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 4 x + 113 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$110$ |
$[110, 12980, 1444190, 163028800, 18424131550, 2081952969140, 235260577798510, 26584441910611200, 3004041934548288590, 339456738980563598900]$ |
$110$ |
$[110, 12980, 1444190, 163028800, 18424131550, 2081952969140, 235260577798510, 26584441910611200, 3004041934548288590, 339456738980563598900]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-109}) \) |
$C_2$ |
simple |
| 1.113.ad |
$1$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 3 x + 113 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$111$ |
$[111, 12987, 1443888, 163025811, 18424175271, 2081953658304, 235260573708999, 26584441790713443, 3004041934669163184, 339456738997910648907]$ |
$111$ |
$[111, 12987, 1443888, 163025811, 18424175271, 2081953658304, 235260573708999, 26584441790713443, 3004041934669163184, 339456738997910648907]$ |
$5$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-443}) \) |
$C_2$ |
simple |
| 1.113.ac |
$1$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 2 x + 113 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$112$ |
$[112, 12992, 1443568, 163023616, 18424228592, 2081954189504, 235260566840432, 26584441691286528, 3004041935384808304, 339456739013892285632]$ |
$112$ |
$[112, 12992, 1443568, 163023616, 18424228592, 2081954189504, 235260566840432, 26584441691286528, 3004041935384808304, 339456739013892285632]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-7}) \) |
$C_2$ |
simple |
| 1.113.ab |
$1$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - x + 113 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$113$ |
$[113, 12995, 1443236, 163022275, 18424288513, 2081954524160, 235260557967121, 26584441625801475, 3004041936559785188, 339456739025066533475]$ |
$113$ |
$[113, 12995, 1443236, 163022275, 18424288513, 2081954524160, 235260557967121, 26584441625801475, 3004041936559785188, 339456739025066533475]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-451}) \) |
$C_2$ |
simple |
| 1.113.a |
$1$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 + 113 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$114$ |
$[114, 12996, 1442898, 163021824, 18424351794, 2081954638404, 235260548044818, 26584441602969600, 3004041937984268274, 339456739029071018436]$ |
$114$ |
$[114, 12996, 1442898, 163021824, 18424351794, 2081954638404, 235260548044818, 26584441602969600, 3004041937984268274, 339456739029071018436]$ |
$8$ |
$0$ |
$1$ |
$1$ |
$2$ |
\(\Q(\sqrt{-113}) \) |
$C_2$ |
simple |
| 1.113.b |
$1$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + x + 113 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$115$ |
$[115, 12995, 1442560, 163022275, 18424415075, 2081954524160, 235260538122515, 26584441625801475, 3004041939408751360, 339456739025066533475]$ |
$115$ |
$[115, 12995, 1442560, 163022275, 18424415075, 2081954524160, 235260538122515, 26584441625801475, 3004041939408751360, 339456739025066533475]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-451}) \) |
$C_2$ |
simple |
| 1.113.c |
$1$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 2 x + 113 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$116$ |
$[116, 12992, 1442228, 163023616, 18424474996, 2081954189504, 235260529249204, 26584441691286528, 3004041940583728244, 339456739013892285632]$ |
$116$ |
$[116, 12992, 1442228, 163023616, 18424474996, 2081954189504, 235260529249204, 26584441691286528, 3004041940583728244, 339456739013892285632]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-7}) \) |
$C_2$ |
simple |
| 1.113.d |
$1$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 3 x + 113 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$117$ |
$[117, 12987, 1441908, 163025811, 18424528317, 2081953658304, 235260522380637, 26584441790713443, 3004041941299373364, 339456738997910648907]$ |
$117$ |
$[117, 12987, 1441908, 163025811, 18424528317, 2081953658304, 235260522380637, 26584441790713443, 3004041941299373364, 339456738997910648907]$ |
$5$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-443}) \) |
$C_2$ |
simple |
| 1.113.e |
$1$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 4 x + 113 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$118$ |
$[118, 12980, 1441606, 163028800, 18424572038, 2081952969140, 235260518291126, 26584441910611200, 3004041941420247958, 339456738980563598900]$ |
$118$ |
$[118, 12980, 1441606, 163028800, 18424572038, 2081952969140, 235260518291126, 26584441910611200, 3004041941420247958, 339456738980563598900]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-109}) \) |
$C_2$ |
simple |
| 1.113.f |
$1$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 5 x + 113 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$119$ |
$[119, 12971, 1441328, 163032499, 18424603519, 2081952173504, 235260517495423, 26584442034250275, 3004041940910420144, 339456738965705542811]$ |
$119$ |
$[119, 12971, 1441328, 163032499, 18424603519, 2081952173504, 235260517495423, 26584442034250275, 3004041940910420144, 339456738965705542811]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-427}) \) |
$C_2$ |
simple |
| 1.113.g |
$1$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 6 x + 113 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$120$ |
$[120, 12960, 1441080, 163036800, 18424620600, 2081951333280, 235260520185720, 26584442143603200, 3004041939845113080, 339456738956814352800]$ |
$120$ |
$[120, 12960, 1441080, 163036800, 18424620600, 2081951333280, 235260520185720, 26584442143603200, 3004041939845113080, 339456738956814352800]$ |
$18$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-26}) \) |
$C_2$ |
simple |
| 1.113.h |
$1$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 7 x + 113 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$121$ |
$[121, 12947, 1440868, 163041571, 18424621721, 2081950517504, 235260526188809, 26584442221623363, 3004041938406084004, 339456738956210433107]$ |
$121$ |
$[121, 12947, 1440868, 163041571, 18424621721, 2081950517504, 235260526188809, 26584442221623363, 3004041938406084004, 339456738956210433107]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-403}) \) |
$C_2$ |
simple |
| 1.113.i |
$1$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 8 x + 113 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$122$ |
$[122, 12932, 1440698, 163046656, 18424606042, 2081949798404, 235260534948442, 26584442254660608, 3004041936859388474, 339456738964428972932]$ |
$122$ |
$[122, 12932, 1440698, 163046656, 18424606042, 2081949798404, 235260534948442, 26584442254660608, 3004041936859388474, 339456738964428972932]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-97}) \) |
$C_2$ |
simple |
| 1.113.j |
$1$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 9 x + 113 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$123$ |
$[123, 12915, 1440576, 163051875, 18424573563, 2081949246720, 235260545537931, 26584442234791875, 3004041935515998528, 339456738979889529075]$ |
$123$ |
$[123, 12915, 1440576, 163051875, 18424573563, 2081949246720, 235260545537931, 26584442234791875, 3004041935515998528, 339456738979889529075]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-371}) \) |
$C_2$ |
simple |
| 1.113.k |
$1$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 10 x + 113 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$124$ |
$[124, 12896, 1440508, 163057024, 18424525244, 2081948926304, 235260556708028, 26584442161804800, 3004041934677920764, 339456738998986115936]$ |
$124$ |
$[124, 12896, 1440508, 163057024, 18424525244, 2081948926304, 235260556708028, 26584442161804800, 3004041934677920764, 339456738998986115936]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-22}) \) |
$C_2$ |
simple |
| 1.113.l |
$1$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 11 x + 113 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$125$ |
$[125, 12875, 1440500, 163061875, 18424463125, 2081948888000, 235260566975125, 26584442044531875, 3004041934575000500, 339456739016676426875]$ |
$125$ |
$[125, 12875, 1440500, 163061875, 18424463125, 2081948888000, 235260566975125, 26584442044531875, 3004041934575000500, 339456739016676426875]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-331}) \) |
$C_2$ |
simple |
| 1.113.m |
$1$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 12 x + 113 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$126$ |
$[126, 12852, 1440558, 163066176, 18424390446, 2081949162804, 235260574754814, 26584441901192448, 3004041935300501214, 339456739027577041332]$ |
$126$ |
$[126, 12852, 1440558, 163066176, 18424390446, 2081949162804, 235260574754814, 26584441901192448, 3004041935300501214, 339456739027577041332]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-77}) \) |
$C_2$ |
simple |
| 1.113.n |
$1$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 13 x + 113 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$127$ |
$[127, 12827, 1440688, 163069651, 18424311767, 2081949754304, 235260578545847, 26584441758359523, 3004041936756814384, 339456739027468857707]$ |
$127$ |
$[127, 12827, 1440688, 163069651, 18424311767, 2081949754304, 235260578545847, 26584441758359523, 3004041936756814384, 339456739027468857707]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-283}) \) |
$C_2$ |
simple |
| 1.113.o |
$1$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 14 x + 113 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$128$ |
$[128, 12800, 1440896, 163072000, 18424233088, 2081950630400, 235260577169536, 26584441648128000, 3004041938626283648, 339456739014979904000]$ |
$128$ |
$[128, 12800, 1440896, 163072000, 18424233088, 2081950630400, 235260577169536, 26584441648128000, 3004041938626283648, 339456739014979904000]$ |
$8$ |
$0$ |
$4$ |
$4$ |
$1$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
simple |
| 1.113.p |
$1$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 15 x + 113 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$129$ |
$[129, 12771, 1441188, 163072899, 18424161969, 2081951714304, 235260570069633, 26584441603020675, 3004041940386118884, 339456738993037487811]$ |
$129$ |
$[129, 12771, 1441188, 163072899, 18424161969, 2081951714304, 235260570069633, 26584441603020675, 3004041940386118884, 339456738993037487811]$ |
$5$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-227}) \) |
$C_2$ |
simple |
| 1.113.q |
$1$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 16 x + 113 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$130$ |
$[130, 12740, 1441570, 163072000, 18424107650, 2081952874820, 235260557677730, 26584441648128000, 3004041941390730370, 339456738969464725700]$ |
$130$ |
$[130, 12740, 1441570, 163072000, 18424107650, 2081952874820, 235260557677730, 26584441648128000, 3004041941390730370, 339456738969464725700]$ |
$5$ |
$0$ |
$4$ |
$4$ |
$1$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
simple |
| 1.113.r |
$1$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 17 x + 113 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$131$ |
$[131, 12707, 1442048, 163068931, 18424081171, 2081953915904, 235260541849219, 26584441789937283, 3004041941049530624, 339456738955834210307]$ |
$131$ |
$[131, 12707, 1442048, 163068931, 18424081171, 2081953915904, 235260541849219, 26584441789937283, 3004041941049530624, 339456738955834210307]$ |
$1$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-163}) \) |
$C_2$ |
simple |
| 1.113.s |
$1$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 18 x + 113 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$132$ |
$[132, 12672, 1442628, 163063296, 18424095492, 2081954565504, 235260526374852, 26584442001266688, 3004041939133331844, 339456738963380303232]$ |
$132$ |
$[132, 12672, 1442628, 163063296, 18424095492, 2081954565504, 235260526374852, 26584442001266688, 3004041939133331844, 339456738963380303232]$ |
$7$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-2}) \) |
$C_2$ |
simple |
| 1.113.t |
$1$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 19 x + 113 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$133$ |
$[133, 12635, 1443316, 163054675, 18424165613, 2081954463680, 235260517572941, 26584442201679075, 3004041936247910068, 339456738994407653675]$ |
$133$ |
$[133, 12635, 1443316, 163054675, 18424165613, 2081954463680, 235260517572941, 26584442201679075, 3004041936247910068, 339456738994407653675]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-91}) \) |
$C_2$ |
simple |
| 1.113.u |
$1$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 20 x + 113 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$134$ |
$[134, 12596, 1444118, 163042624, 18424308694, 2081953150004, 235260524967238, 26584442232710400, 3004041934519113254, 339456739027213408436]$ |
$134$ |
$[134, 12596, 1444118, 163042624, 18424308694, 2081953150004, 235260524967238, 26584442232710400, 3004041934519113254, 339456739027213408436]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-13}) \) |
$C_2$ |
simple |
| 1.113.v |
$1$ |
$\F_{113}$ |
$113$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 21 x + 113 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$135$ |
$[135, 12555, 1445040, 163026675, 18424544175, 2081950050240, 235260562055535, 26584441827207075, 3004041938540059440, 339456738992060569275]$ |
$135$ |
$[135, 12555, 1445040, 163026675, 18424544175, 2081950050240, 235260562055535, 26584441827207075, 3004041938540059440, 339456738992060569275]$ |
$1$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-11}) \) |
$C_2$ |
simple |